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Abstract. Spatial data mining denotes the extraction of patterns from both 
spatial and aspatial data, possibly stored in a spatial database. An important 
application of spatial data mining methods is the extraction of knowledge from 
a Geographic Information System. INGENS (Inductive Geographic Information 
System) is a prototype GIS which integrates data mining tools to assist users in 
their task of topographic map interpretation. The system can mine geographical 
concepts that are not explicitly available in the database. The spatial data 
mining process is aimed at a user who controls the parameters of the process by 
means of a mining query written in a mining query language. This paper 
presents SDMOQL, a spatial mining query language, based on the standard 
OQL, which permits the specification of the task-relevant data, the kind of 
knowledge to be mined, the background knowledge and the hierarchies, and the 
interestingness measures. SDMOQL currently supports two data mining tasks 
in INGENS: inducing classification rules and discovering association rules. 
Only the part of the language defined for classification tasks is presented in the 
paper. Some constraints on the query language are identified by the particular 
mining task. The syntax of the query language is described and the application 
to a real repository of maps is briefly reported.   

1. Introduction 

Spatial data are important in many applications, such as computer-aided design, 
image processing, VLSI, and geographic information systems (GIS). This steady 
growth of spatial data is outpacing the human ability to interpret them. There is a 
pressing need for new techniques and tools that find implicit regularities hidden in the 
spatial data. Spatial data mining denotes the extraction of spatial patterns from both 
spatial and aspatial data, possibly stored in a spatial database. Generally speaking, a 
spatial pattern is a pattern showing the interaction of two or more spatial objects or 
space-dependant attributes according to a particular spacing or set of arrangements 
[1]. 

Several works on spatial data mining have already been reported in the literature. 
An overview of spatial data mining can be found in [9], while seminal work on 
mining spatial association rules is reported in [8]. New algorithms for spatial 
classification and spatial trend analysis are illustrated in [3], and a survey on spatial 
clustering methods in data mining is reported in [7]. A database perspective on spatial 
data mining is given in the work by Ester et al. [4], who define a small set of database 



primitives for the manipulation of neighborhood graphs and paths used in some 
spatial data mining systems. An Inductive Logic Programming (ILP) perspective on 
spatial data mining is reported in [14], which proposes a logical framework for spatial 
association rule mining.  

GIS offers an important application area where spatial data mining techniques can 
be effectively used. In the work by Malerba et al. [13], it can be seen how some 
classification patterns, induced from georeferenced data, can be used in topographic 
map interpretation tasks. A prototype of GIS has been built around this application. 
INGENS (Inductive Geographic Information System) [12] is an innovative GIS with 
data mining facilities used to support sophisticated end users in their topographic map 
interpretation tasks. In INGENS, each time a user wants to query the database on 
some geographical objects not explicitly modeled, he/she can prospectively train the 
system to recognize such objects and to create a special user view. Training is based 
on a set of examples and counterexamples of geographic concepts of interest to the 
user (e.g., ravine or steep slopes). Such concepts are not explicitly modeled in the 
map legends, so they cannot be retrieved by simple queries. Furthermore, the user has 
serious difficulty formalizing their operational definitions. Therefore, it is necessary 
to rely on the support of a knowledge discovery system that generates some plausible 
“definitions”. The sophisticated user is simply asked to provide a set of (counter-) 
examples (e.g., map cells) and a number of parameters that define the data mining 
task more precisely.   

An INGENS user should not suffer from problems related to the integration of 
different technologies, such as data mining, OODBMS, and GIS. In general, to solve 
these problems the use of data mining query languages (data mining language, for 
short) has been proposed, which interface users with the whole system and hide the 
different technologies [6]. A data mining language allows a user to formulate a data 
mining task without paying attention at logical and physical representation problems, 
as well as the correct procedural order in which some data mining steps should be 
performed. A data mining language is as important for quickly developing decision 
support applications as SQL for quickly implementing business applications. 
Interpreters for a data mining language are the gate through the pattern catalogue and 
the data mining processor, just as the query language interpreters are the gate through 
the system catalogue and the run-time database processor. A casual user can find 
patterns by means of a data mining language in the same way he/she can find data by 
means of a SQL query, without developing an ad hoc application which satisfies 
his/her information need. Furthermore, having a data mining query language provides 
a foundation on which graphical user interfaces can be built.  

A data mining query language must incorporate a set of data mining primitives 
designed to facilitate efficient, fruitful knowledge discovery. Such primitives include 
the specification of the portions of the database in which the user is interested, 
including the database attributes or data warehouse dimensions of interest, the kinds 
of knowledge to be mined, background knowledge useful in guiding the discovery 
process, interestingness measures of pattern evaluation, and how the discovered 
knowledge should be visualized.  

The problem of designing a spatial mining language has received little attention in 
the literature. Koperski designed GMQL (Geo Mining Query Language)  

[10], a language for the formulation of the input to data mining processes. The 
language uses a unified syntax, which allows a variety of data mining queries. GMQL 
is based on DMQL (Data Mining Query Language) [5], which was developed for 
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mining knowledge from relational databases. SQL remains the milestone on which 
both data mining languages are built.   

This paper presents SDMOQL (Spatial Data Mining Object Query Language) a 
spatial mining query language for INGENS sophisticated users. The presence of a 
spatial mining query language in a system like INGENS facilitates the expert user 
who has to train the system by means of inductive queries. Since the Map Repository 
is implemented in a commercial OODBMS, INGENS spatial mining language is 
based on OQL, the standard defined by ODMG (Object Database Management 
Group) for designing object oriented models. The paper is organized as follows. 
INGENS architecture and conceptual database schema are described in the next 
section, while in Section 3 the spatial data mining process in INGENS is introduced. 
In Section 4 SDMOQL syntax is presented. Finally, in Section 5, a complete example 
of SDMOQL use in INGENS is described. 

2. INGENS architecture and conceptual database schema 

The architecture of INGENS is illustrated in Fig. 1. The interface layer implements a 
graphical user interface (GUI), which is a Java applet. The layer of the application 
enablers makes several facilities available to INGENS users. In particular, the Map 
Descriptor is the application enabler responsible for the automated generation of first-
order logic descriptions of some geographical objects. The Data Mining Server 
provides a suite of data mining systems that can be run concurrently by multiple users 
to train INGENS. The Query Interpreter allows any user to formulate queries in 
SDMOQL language. Therefore, it is the responsibility of the Query Interpreter to 
select the involved objects from the Map Repository, to ask the Map Descriptor to 
generate their logical descriptions and to invoke the Data Mining Server to train the 
system. The Map Converter is a suite of tools which support the acquisition of maps 
from external sources, namely raster images from scanners and geographical objects 

Fig. 1.  INGENS three-layered software architecture. 



from vectorized maps in a proprietary format. The Map Editor permits the integration 
and/or modification of information acquired by means of the Map Converter.  The 
lowest layer manages resources like the Knowledge Repository and the Map 
Repository. The former contains the geographical concepts induced by the Data 
Mining Server. The Map Repository  is the database instance that contains the actual 
collection of maps stored in the GIS. The Map Storage Subsystem is involved in 
storing, updating and retrieving items in and from the map collection. As a resource 
manager, it represents the only access path to the data contained in the Map 
Repository and which are accessed by multiple, concurrent clients. Geographic data 
are organized according to an object-oriented data model. At the conceptual level, the 
model is described by the class diagram in Fig. 2. 

Each map is stored according to a hybrid tessellation – topological model. The 
tessellation model follows the usual topographic practice of superimposing a regular 
grid on a map in order to simplify the localization process. Indeed each map in the 
repository is divided into square cells of the same size. In the topological model of 
each cell it is possible to distinguish two different structural hierarchies: physical and 
logical. The physical hierarchy describes the geographical objects by means of the 
most appropriate physical entity, that is: point, line or region. Some topological 
relationships between points, lines and regions are modelled in the conceptual design, 
namely points inside a region or on its border, and regions disjoining/meeting/ 
overlapping/containing/equalling/covering other regions. The logical hierarchy 
expresses the semantics of geographical objects, independent of their physical 
representation. Since the conceptual data model has been designed to store 
topographic maps, the entity logical_object is a total generalization of eight distinct 
entities, namely hydrography, orography, land administration, vegetation, 
administrative (or political) boundary, ground transportation network, construction 
and built-up area, which represent different geographic layers in a topographic map. 
A geographic layer describes one or more geographical objects of the same class.  

Fig. 2. Class diagram of INGENS conceptual model in Unified Modeling Language 
(UML). 
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3. Spatial Data Mining process in INGENS 

The spatial data mining process in INGENS is aimed at a user who controls the 
parameters of the process. Initially, the query written in SDMOQL is syntactically 
and semantically analyzed. Then the Map Descriptor generates a highly conceptual 
qualitative representation of the raw data stored in the object-oriented database. This 
representation is a conjunctive formula in a first-order logic language, whose atoms 
have the following syntax: 

f(t1,…,tn)   =   value, 
where f is a function symbol called descriptor, ti are terms and the value is taken from 
the range of f. Descriptors can be either nominal or linear according to the ordering 
relation defined on its range. A set of descriptors used in INGENS is reported in 
Table 1. It is quite general and it can capture geometric, topological and directional 
features of a geographical object in a map. The operational semantics of these 
descriptors is based on a set of methods defined in the object-oriented model of the 
Map Repository. 

The following is an example of the qualitative representation of river and road 
objects by means of spatial and aspatial descriptors : 

contain(x1,x6)=true, contain(x1,x11)=true, 
contain(x1,x41)=true, type_of(x1)=cell, 
type_of(x6)=road, type_of(x11)=river, 
type_of(x41)=river, subtype_of(x6)=cart_track_road, 
color(x6)=black, color(x11)=blue, color(x41)=blue, 
extension(x6)=747.976, extension(x11)=1131.84, 
extension(x41)=850.423,line_shape(x6)=curvilinear, 
line_shape(x11)=curvilinear,      
line_shape(x41)=curvilinear,  
line_to_line(x11,x41)=almost_parallel. 

This qualitative data representation can be easily translated into Datalog with built-
in predicates [2]. Thanks to this transformation, it is possible to use the output of the 
Map Descriptor module in many data mining algorithms designed to run with 
Datalog-like input.  

Data mining algorithms mine spatial patterns based on the qualitative descriptions 
of the extracted data. Finally, the results of the mining process are presented to the 
user. The graphical feedback is very important in the analysis of the results.  

4. Design of a data mining language for INGENS 

SDMOQL is designed to support the interactive data mining process in INGENS. 
Designing a comprehensive data mining language is a challenging problem because 
data mining covers a wide spectrum of tasks from data classification to mining 
association rules. The design of an effective data mining query language requires a 
deep understanding of the power, limitation and underlying mechanisms of the 
various kinds of data mining tasks. We looked at primitives for defining a data mining 
task in the form of a data mining query. The primitives specify the following: 

 



Table 1. Set of descriptors extracted by the Map Descriptor module in INGENS. 

Feature Meaning Type Domain 
   Type Value 

Contain(X,Y) Cell X contains 
object Y 

Topological 
relation 

boolean �true, false� 

Type_of(Y) Type of Y Aspatial 
attribute 

nominal 33 nominal 
values 

Subtype_of(Y) Specialization of 
the type of Y 

Aspatial 
attribute 

nominal 101 nominal 
values  

Color(Y) Color of Y Aspatial 
attribute 

nominal �blue, brown, 
black� 

Area(Y) Area of Y Geometrical 
attribute 

linear [0..MaxArea] 

Density(Y) Density of Y 
Geometrical 

attribute ordinal 
Symbolic 
names chosen 
by expert user 

Extension(Y) Extension of Y Geometrical 
attribute 

linear [0..MaxExt] 

Geo_direction (Y) 
Geographic 

direction of  Y 
Directional 

attribute nominal 
�north, east, 
north_west, 
north_east� 

Line_shape(Y) 
Shape of the linear 

object Y 
Geometrical 

attribute nominal 
�straight, 
curvilinear, 
cuspidal� 

Altitude(Y) Altitude of Y Geometrical 
attribute 

linear [0.. MaxAlt] 

Line_to_line 
(Y,Z) 

Spatial relation 
between two lines Y 

and Z 

Hybrid 
relation 

nominal 

�almost 
parallel, 

almost 
perpendicular� 

Distance(Y,Z) Distance between 
two lines Y and Z 

Geometrical 
relation 

linear [0..MaxDist] 

Region_to_region 
(Y,Z) 

Spatial relation 
between two 

regions Y and Z 

Topological 
relation 

nominal 

�disjoint, 
meet, overlap, 
covers, 
covered_by, 
contains, 
equal, inside� 

Line_to_region 
(Y,Z) 

Spatial relation 
between a line Y 
and a region Z 

Hybrid 
relation nominal �along_edge, 

intersect� 

Point_to_region 
(Y,Z) 

Spatial relation 
between a point Y 

and a region Z 

Topological 
relation 

nominal 

�inside, 
outside, 
on_boundary, 
on_vertex� 



� The set of task-relevant data to be mined 
� The kind of knowledge to be mined 
� The background knowledge to be used in the discovery process 
� The interestingness measures and thresholds for pattern evaluation 
� The expected representation for visualizing the discovered patterns. 

In Sections 4.1 to 4.4 the syntax for the first four data mining primitives is both 
formally specified in extended BNF and explained through various examples of 
possible mining problems. 

4.1 Syntax for task-relevant data specification 

The first step in defining a data mining task is the specification of the data on which 
mining is to be performed. In traditional data mining applications, it is generally 
sufficient to specify database attributes, data warehouse dimensions or cubes which 
contain the portions of data of interest for two reasons: 

1. no interaction between objects is assumed, so that each object can be 
effectively described by a tuple in a relation 

2. no complex transformation of stored data is required.  
In this case, relatively simple SQL queries can be used to specify the data set to mine. 

On the contrary, in GIS applications, attributes of the neighbors of some spatial 
object of interest may influence the object itself and therefore they should be 
considered as well. In fact, the explicit location and extension of spatial objects define 
implicit relations of a spatial neighborhood (such as topological, distance and 
direction relations), which cannot be neglected by spatial data mining algorithms. 
Consequently, the data set to mine cannot be straightforwardly represented by means 
of a relational table, where distinct tuples refer to distinct objects. Moroever, working 
at the level of stored data, that is geometric representations (points, lines and regions) 
of geographical objects, is often undesirable. The GIS user is interested in working at 
higher conceptual levels, where human-interpretable properties and relations between 
geographical objects are expressed. A typical example is represented by the possible 
relations between two roads, which either cross each other, or run parallel, or can be 
confluent, independently of the fact that the two roads are represented by one or more 
tuples of a relational table of “lines” or “regions”. Therefore, complex transformations 
are required to describe geographical objects to be mined. 

To solve these problems, the SDMOQL interpreter allows users to select the 
geographical objects that are relevant to the data mining task, and then it invokes the 
Map Descriptor in order to produce their high level conceptual descriptions, including 
both properties and relations. 

The selection of geographical objects is performed by means of simplified OQL 
queries with a SELECT-FROM-WHERE structure. To explain the constraints 
imposed on the OQL syntax by this particular application, some examples are 
reported in the following:   

Example 1 - Cell-level query 
The user selects cell 26 from the topographic map of Canosa (Apulia) and the Map 
Descriptor generates the description of all the objects in this cell. 



SELECT x FROM x in Cell                                 
WHERE x->num_cell = 26                                
AND x->part_map->map_name = “Canosa” 

Example 2 - Layer-level query 
The user selects the layer Horography from the topographic map of Canosa and the 
layer Construction from any map. The Map Descriptor generates the description of 
the objects in these layers. 

SELECT x, y FROM x in Horography, y in Construction 
WHERE x->part_map->map_name = “Canosa” 

Example 3 - Object-level query 
The user selects the objects of the logic class River and the objects of type motorway 
(instances of the class Road), from cell 26 of the topographic map of Canosa. The 
Map Descriptor generates the description of these objects.  

SELECT x, y FROM x in River, y in Road             
WHERE x->part_map->map_name = “Canosa” AND 

y->part_map->map_name = “Canosa” AND 
x->log_incell->num_cell = 26 AND 
y->log_incell->num_cell = 26 AND 
y->type_road = “motorway” 

The above queries do not present semantic problems. However, the next example is 
an OQL query which is syntactically correct but selects data that cannot be a valid 
input to the Map Descriptor. 

Example 4 - Semantically ambiguous query:  

SELECT x, y                                          
FROM x in Cell, y in River                          
WHERE   x->num_cell = 26                                   
AND     y->log_incell->num_cell = 26 

This query selects the object cell 26 and all rivers in it. However, it is unclear 
whether the Map Descriptor should describe the entire cell 26 or only the rivers in it, 
or both. In the first case, a cell-level query must be formulated (see example 1). In the 
second case, an object-level query produces the desired results (see example 3). In the 
(unusual) case that both kinds of descriptions have to be generated, the problem can 
be solved by the UNION operator, applied to the cell-level query and the object-level 
query. Therefore, the following constraint is imposed on SDMOQL: the selected data 
must belong to the same symbolic level (cell, layer or logic object). More formally the 
FROM clause can contain either a group of Cells or a set of Layers, or a set of Logic 
Objects, but never a mixture of them.  

Example 5 - Attributes in the SELECT clause 
This example is useful to present the constraints imposed on the SELECT clause. 

SELECT x.name_river                                       
FROM x in River 



The query selects the names of all the rivers stored in the database. The result set 
contains attributes and not geographical objects to be described by a set of attributes 
and relations. In order to select proper input data for the Map Descriptor, the SELECT 
clause should return objects of a class in the database schema corresponding to a cell, 
a layer or a type of logical object. It might be observed that the presence of an 
attribute in the SELECT clause can be justified when its type corresponds to a class. 
For instance, the following query: 

SELECT x->River FROM x in Cell                             
WHERE x->num_cell=26 

concerns all rivers in cell 26. Nevertheless, thanks to inverse relations (inverse 
members) characterizing an object model, it is possible to reformulate it as follows:  

SELECT x FROM x in River                            
WHERE x->log_incell->num_cell=26 

In this way, all the above constraints should be respected.  

4.2 The kind of knowledge to be mined 

The kind of knowledge to be mined determines the data mining task in hand. For 
instance, classification rules or decision trees are used in classification tasks, while 
association rules or complex correlation coefficients are extracted in association tasks. 
Currently, SDMOQL supports the generation of either classification rules or 
association rules, which means that only two different mining problems can be solved 
in INGENS: the former has a predictive nature, while the latter is descriptive. The 
top-level syntax is defined below: 

 
<SDMOQL> ::= <SDMOQL_Statement>; {<SDMOQL_Statement>} 
<SDMOQL_Statement> ::= <Spatial_Data_Mining_Statement> 
<Spatial_Data_Mining_Statement> ::= 
  <Limited_OQL_Query> 
  mine 
  <Kind_of_Pattern> 
<Kind_of_Pattern> ::=  

<Classification_Rules> | <Association_Rules>  
 
In particular <Classification_Rules> specifies that patterns for data classification 

tasks are to be mined: 1 
 
<Classification_Rules> ::= 
  classification as <Pattern_Name> 
  for <Classification_Concept>{,<Classification_Concept>}  
  [<Analyze_List>] 
<Analyze_List> ::= 
  analyze <Descriptor_List> 

 
                                                           
1 The syntax for association rules is omitted due to space constraints. 



In a classification task, the user may be interested in inducing a set of classification 
rules for a subset of the classes (or concepts) to which training examples belong. 
Typically, the user specifies both “positive” and “negative” examples, that is he/she 
specifies examples of two different classes, but he/she is interested in classification 
rules for the “positive” class alone. In this case, the subset of interest for the user is 
specified in the <Classification_Concept>. The analyze clause indicates that the 
descriptions of selected data is based on the spatial/aspatial descriptors in the 
<Descriptor_List>. An example of a classification task activated by an SDMOQL 
statement is the following:  

Example 6 - Classification task  

SELECT x FROM x in Cell                                  
WHERE x->num_cell >= 5 AND x->num_cell <= 12           
mine classification as MorphologicalElements         
for class(_)=system_of_farms,class(_)=fluvial_landscape 
analyze contain/2, type_of/1, subtype_of/1, area/1, 
 density/1, extension/1, line_shape/1, 
 geographic_direction/1, line_to_line/2, 
 distance/2, line_to_region/2,
 region_to_region/2,point_to_region/2 

In this case, the Map Descriptor generates a symbolic description of the cells with 
number identifiers between 5 and 12 using the predicates listed in the analyze clause. 
There are two concepts to be learned: class(_)=system_of_farms and 
class(_)=fluvial_landscape. Here the function symbol class is unary and “_” denotes 
the anonymous variables à la Prolog.  The user can provide examples of these two 
classes, as well as of other classes. Examples of systems of farms are considered as 
positive for the first concept in the list and negative for the second concept. The 
converse is true for examples of fluvial landscapes. Examples of other classes are 
considered as counterexamples of both classes, for which rules will be generated.  

4.3 Syntax for Background Knowledge and Concept Hierarchy Specification 

Background knowledge is information provided by a domain expert about the domain 
to be mined. It can be useful in the discovery process. A top-level syntax is defined 
below for background knowledge and concept hierarchy specification: 

 
<SDMOQL_Statement> ::= 

<Spatial_Data_Mining_Statement> 
| <Background_Knowledge> 
| <Hierarchy> 

<Spatial_Data_Mining_Statement> ::= 
  <Limited_OQL_Query> 
  mine 
  <Kind_of_Pattern> 

<Background_Knowledge> 
                <Hierarchy> 



 
In INGENS, the background knowledge is expressed as a set of definite clauses: 
define knowledge definite_clauses 

Alternatively, the user can specify a set of rules explicitly stored in a deductive 
database and possibly mined in a previous step:   

use background knowledge of users 
Username1, Username2 about Predicate_Name1/Argument_Number1, 
Username3 about Predicate_Name2/Argument_Number2 

An example of background knowledge provided by a user in a geographic mining task 
is the following: 

Example 7 – Defining the concept close_to to support spatial qualitative reasoning 

define knowledge                             
close_to(X,Y)=true:-region_to_region(X,Y)=meet.              
close_to(X,Y)=true:- close_to(Y,X)=true.  

Concept hierarchies allow knowledge mining at a multiple abstraction levels. They 
can be used  in roll-up and drill-down operations. Patterns can be rolled up, or viewed 
at a more general level, by climbing up the concept hierarchy of an attribute, 
replacing a lower level concept by a higher level one. Patterns can also be drilled 
down by stepping down the concept hierarchy of an attribute.  In order to 
accommodate the different viewpoints of users with regard to the data, there may be 
more than one concept hierarchy per attribute or dimension. For instance, some users 
may prefer to organize census districts (or enumeration districts) by wards and 
districts, while others may prefer to organize them according to their main purpose 
(industrial area, residential area, and so on).  
There are four major types of concept hierarchies [5]: 

� Schema hierarchies:  belong to total or partial order among attributes in the 
database schema. 

� Set-grouping hierarchies: organize values for given attributes or dimensions 
into groups of constants or range values. 

� Operation-derived hierarchies: are based on operations specified by experts, 
or data mining systems.  

� Rule-based hierarchies: occur when either a whole concept or a portion of it 
is defined by a set of rules. 

In SDMOQL a specific syntax is defined for the first two types of hierarchies. 
Rule-based hierarchies can be defined as background knowledge. The following 
examples show how to define a schema hierarchy and a set-grouping hierarchy. 

Example 8 - Definition of a schema hierarchy   
A user defines a schema hierarchy for a relation activity, as shown in  Fig. 3a 

define hierarchy Activity as          
level1:{business_activity, other_activity}              
  < level0: Activity;     
level2:{low_business_activity,high_business_activity} 
  < level1: business_activity; 

This kind of hierarchy is used to mine multi-level spatial association rules [14 ]. 



Fig. 3 – Schema hierarchy (a) and set-grouping hierarchy (b). 

Example 9 - Definition of a set-grouping hierarchy 
The set-grouping hierarchy for distance (see Fig. 3b) can be defined in terms of 
ranges, as follows: 

define hierarchy Distance for distance/2 as           
level1:{far, near} < level0: Distance;               
level2:{0, 1999} < level1: near;                     
level2:{2000, +inf} < level1: far; 

As in the case of the background knowledge, the following clause: 
use hierarchy Activity of user Username 

permits users to import a concept hierarchy defined by another user. 

4.4 Syntax for Interestingness Measure Specification 

The user can control the data mining process by specifying measures of pattern 
interestingness and their corresponding thresholds. The SDMOQL top-level syntax is 
extended as follows: 
<Spatial_Data_Mining_Statement> ::= 
  <Limited_OQL_Query> 
  mine 
  <Kind_of_Pattern> 

<Background_Knowledge> 
<Hierarchy> 
with <Interestingness_Measures> 

Interestingness measures may include: threshold values, search biases in the 
hypotheses space and algorithm-specific parameters. The user can set thresholds such 
as confidence, support or number of learned concepts as follows: 

ThresholdParameter threshold Value 
The user can also bias the search in the hypotheses space by a number of 

preference criteria, such as maximization of the number of covered examples or 
minimization of the number of variables in the body of a learned clause, according to 
the following syntax: 

Activity 

other_activity business_activity 

low_business_activity high_business_activity 

Distance 

near far 

2 Km … +inf Km 0 m … 1999 m 

b) a) 



preference criteria (minimize | maximize ) Criterion with tolerance Value. 
Finally, the user can set the value of a generic input parameter of a data mining 

algorithm with the statement: 
ParameterName = Value 

An example of parameters defined for a classification task is reported in the next 
section.   

5. Mining classification rules for topographic map interpretation 

In the previous section, the syntax of SDMOQL has been partially defined. Here we 
present the full specification of a SDMOQL query for the problem of mining 
classification rules for topographic map interpretation. Let us suppose that a GIS user 
needs to localize a “sistema poderale” (system of farms) in the large territory of 
his/her interest. This geographical object is not present in the GIS model, thus, only 
the specification of its operational definition will allow the GIS to find cells 
containing a system of farms in a vectorized map. Who can provide such a definition? 
The user is not able to do so for a number of reasons.  

Firstly, providing the GIS with operational definitions of some environmental 
concepts is not a trivial task. For example, the general description of a road given by 
an expert is “a consolidated way, in the first place used for motor vehicle traffic, 
including over- and underpasses. Moreover, dividing strips and roadsides [omissis] 
belong to roads.” This declarative, abstract definition is difficult to compile into a 
query on a map repository.  
Secondly, the operational definitions of some geographical objects are strongly 
dependent on the data model that is adopted by the GIS. For instance, finding 
relationships between the density of vegetation and climate is easier with a raster data 
model, while determining the preferred orientation of some morphological elements is 
simpler in a topological data model.   

Thirdly, different applications of a GIS will require the recognition of different 
geographical elements in a map. Providing the system in advance with all the 
knowledge required for its various application domains is simply illusory, especially 
in the case of wide-ranging projects such as those set up by governmental agencies.  

A solution to these problems can be found in the application of data mining 
techniques. For instance, an INGENS user can train the system to recognize cells with 
systems of farms, by performing the following SDMOQL query:  

SELECT x FROM x in Cell                                 
WHERE(x->num_cell >= 1 AND x->num_cell <= 6)             
 OR x->num_cell = 11 OR x->num_cell = 34     
 OR (x->num_cell >= 15 and x->num_cell <= 17)   
mine classification as MorphologicalElements          
for class(X)=system_of_farms                          
analyze  contain/2, type_of/1, subtype_of/1, color/1, 
 altitude/1, area/1, density/1, extension/1, 
 line_shape/1, geographic_direction/1, 
 line_to_line/2, distance/2, line_to_region/2,
 region_to_region/2, point_to_region/2        



with preference criteria                         
minimize negative_example_covered with tolerance 0.6, 
maximize positive_example_covered with tolerance 0.4, 
minimize cost with tolerance 0.4                 
number_of_rules  threshold 15, consistent threshold 500 

In this query all the descriptors defined in Table 1 are used to generate the 
symbolic descriptions of the selected cells. The SDMOQL interpreter analyzes the 
query and verifies its syntactic and semantic correctness. Then the Map Descriptor 
generates the symbolic description of the  specified  cells (see  Fig 4) and  the expert 
associates  each  symbolic  description with a concept,  in order to  define the  training 

Fig. 4 - Raster and vector representation (a) and symbolic description of cell 11 (b). 
The cell is an example of a territory where a system of farms is present. The cell is 
extracted from a topographic chart (Canosa di Puglia 176 IV SW - Series M891) 
produced by the Italian Geographic Military Institute (IGMI) at scale 1:25,000 and 
stored in INGENS. 

a) 

b) 
contain(x1,x2)=true, …, contain(x1,x70)=true, 
type_of(x1)=cell, type_of(x2)=parcel,…, type_of(x4)=vegetation,…, 
type_of(x7)=road,…, type_of(x11)=wall,…, type_of(x13)=building,…, 
type_of(x19)=quote,… , type_of(x30)=font,…, 
type_of(x33)=contour_slope, …, 
subtype_of(x2)=cultivation,…, subtype_of(x4)=olive, …, 
subtype_of(x7)=cart_track_road,…, subtype_of(x11)=ruins,…, 
subtype_of(x13)=house,…, subtype_of(x30)=simple,…, 
subtype_of(x33)=auxiliary,…,  
color(x2)=black, …, color(x70)=black, 
extension(x7)=111.018,…, extension(x11)=227.714,…, 
extension(x33)=1104.74, 
geographic_direction(x7)=north, …, geographic_direction(x68)=north, 
line_shape(x7)=straight,…, line_shape(x11)=curvilinear,…, 
line_shape(x33)=cuspidal,…,  
altitude(x19)=106.00, …, altitude(x43)=102.00,  
area(x2)=187525.00, …, area(x62)=30250.00, 
density(x2)=high, …, density(x62)=low, 
line_to_line(x7,x68)=almost_parallel, …, 
line_to_line(x11,x23)=almost_parallel, 
region_to_region(x2,x3)=disjoint, region_to_region(x2,x9)=disjoint, 
region_to_region(x2,x18)=disjoint, region_to_region(x2,x21)=meet,…, 
distance(x7,x68)=5.00,  …, distance(x23,x60)=45.00, 
line_to_region(x8,x27)=adjacent, …, line_to_region(x10,x35)=adjacent, 
point_to_region(x4,x17)=outside, …, point_to_region(x4,x18)=outside,… 



set. Association is made by binding variable terms of one of the two concepts 
class(X)=system_of_farms (to be learned) and class(X)=other to constant terms in the 
descriptions of map cells. This step is necessary to create the training set of positive 
and negative examples for the data mining algorithm ATRE [11], which is used in 
INGENS for classification tasks. Suppose that the user recognizes cells 5, 6, 11 and 
34 as positive examples of a system of farms, he will associate them with the concept 
class(X)=system_of_farms by  binding variable X to the constant x1, which typically 
represents the whole cell in their corresponding descriptions. Similarly, the user will 
associate the remaining cells with the concept class(X)=other. This binding function 
is supported by INGENS GUI. The training set obtained is input to ATRE, which 
returns the classification rules. With reference to the above query, ATRE generates 
the following clause:  

class(X1)=system_of_farms :- type_of(X1)=cell,
 contain(X1,X2)=true,type_of(X2)=parcel, 
 area(X2) in [67225 .. 187525],   
 region_to_region(X2,X3)=meet,   
 type_of(X3)=parcel, 
 region_to_region(X2,X4)=disjoint,  
 region_to_region(X3,X4)=disjoint,  
 line_to_region(X5,X4)=adjacent,  
 point_to_region(X6,X4)=inside,   
 density(X2)=medium. 

This classification rule can be interpreted as follows: a cell is an example of a 
system of farms if it contains two adjacent parcels (X2, X3), such that one (X2) has 
an area between 67,225 and 187,525 square meters and a medium vegetation density, 
and another geographical object (X4) (possibly a parcel), not overlapping the previous 
two, but adjacent to a line (X5) (possibly a cart track), contains another geographical 
object (X6) (possibly an artesian well).  

Operational definitions like that reported above can be used either to retrieve new 
instances of the learned concepts from the Map Repository, or to facilitate the 
formulation of a query involving geo-referenced abstract concepts not in map legends.  

6. Conclusions 

In this paper, a spatial data mining language for a prototypical GIS with knowledge 
discovery facilities has been partially presented. This language is based on a 
simplified OQL syntax and is defined in terms of the five data mining primitives. For 
a given query, these primitives define the relevant data for the task, the kind of 
knowledge to be mined, the background knowledge definition and the concept 
hierarchies, interestingness measures to be used and the representation forms for 
pattern visualization. An interpreter for this language has been developed in the 
system INGENS. It interfaces a Map Descriptor module that can generate a first-order 
logic description of selected geographical objects. A full example of query 
formulation and results has been reported for a classification task used in the 
qualitative interpretation of topographic maps. An extension of this language to other 
spatial data mining tasks supporting quantitative interpretation of maps is planned for 
the near future. 
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