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Summary

Matching is the process of comparing two or more structures to discover their
likenesses or differences. It is a common operation performed in symbolic
classification, pattern recognition, data mining and expert systems. The
definition of a matching operator for Boolean symbolic objects is important for
the development of symbolic data analysis techniques. In this paper we give the
definition of canonical matching of Boolean symbolic objects, and then we extend
it in order to take into account only partial matching caused by the presence of
noise. The new definition of flexible matching is based on the probability theory.
Some experimental results are reported.
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1 Introduction

Matching is the process of comparing two or more structures to discover their
similarities or differences. Similarity judgements in the matching process are
directional: They have a referent, a, and a subject, b. The former is either a



prototype or the description of a class of objects, while the latter is either a
variant of the prototype or an instance of a class of objects. Matching two
structures is a common problem to many domains, like symbolic classification,
pattern recognition, data mining and expert systems.
The definition of a matching operator for Boolean symbolic objects (BSOs) is
deemed important for the development of several symbolic data analysis
techniques, such as factor analysis. In general, a BSO represents a class
description (Diday 1990) and plays the role of the referent in the matching
process. For instance, the following BSO:

a: [color = {black, white}] ∧ [height =[170, 200]]

describes a group of individuals either black or white, whose height is in the
interval [170,200]. Such a set of individuals is called extension of the BSO. The
extension is a subset of the universe Ω of individuals. Given another BSO b,
corresponding to the intensional description of an individual and playing the role
of subject, the problem is that of establishing whether the individual described by
b can be considered an instance of the class described by a. For instance, the
following BSO:

b’: [color = black] ∧ [height =180]

describes an individual in the extension of a, while the following BSO

b”: [color = red] ∧ [height =160]

does not. Then we can say that a matches b’ but not b” .
The result of a canonical matching operator is either 0 (false) or 1 (true). If S
denotes the space of BSOs described by a set of n variables xi taking values in the
corresponding domains Oi, then the  matching operator is a function:

Match: S × S → {0, 1}
such that for any two BSOs a, b ∈ S:

a = [x1 = A1] ∧ [x2 = A2] ∧ … ∧ [xn = An]  =  [ ]ii
n
i Ax =∧ =1

b = [x1 = B1] ∧ [x2 = B2] ∧ … ∧ [xn = Bn] =  [ ]ii
n
i Bx =∧ =1

it happens that:

Match(a,b) = 1 if Bi⊆Ai for each i=1, 2, …, n,
Match(a,b) = 0 otherwise.

It is worthwhile to note that the Match function satisfies two out of three
properties of a similarity measure:

1. ∀ a, b ∈ E: Match(a, b)  ≥ 0
2. ∀ a, b ∈ E: Match(a, a) ≥ Match(a, b) (backward property)

while it does not satisfy the commutativity or simmetry property:

∀ a, b ∈ E: Match(a, b) = Match(b, a)
because of the different role played by a and b.



2 Definition of flexible matching

The requirement Bi⊆Ai for each i=1, 2, …, n, might be too strict for real-world
problems, because of the presence of noise in the description of the individuals of
the universe. For instance, in the example above the function Match returns zero
when height=169. Therefore, it becomes necessary to rely on a more flexible
definition of matching that aims at comparing two descriptions in order to
identify their similarities rather than their equality (Esposito, Malerba &
Semeraro 1991a). The result of a flexible matching should produce a number in
the unit interval [0,1] that indicates a degree of match between two BSOs, that is

flexible-matching: S × S → [0,1]

such that, for any two BSOs a and b,

i) flexible-matching(a,b)=1 if Match(a,b)=true,
ii) flexible-matching(a,b)∈[0,1) otherwise.

The result of the flexible matching can be interpreted as the probability of a
matching b provided that a change is made in b. Let b' be a BSO obtained from b
by means of some changes, such that a matches b', and let P(b | b') be the
conditional probability of observing b given that the original observation was b'.
Then it is possible to set

S a = {b'∈ S | Match(a,b')=1}
and
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that is flexible-matching(a,b) equals the maximum conditional probability over
the space of BSOs matched by a.

Now the problem is that of estimating P(a| b') for all clauses b' matched by a. Let
b be the conjunction of simple BSOs, b1, b2, …, bm. Then, under the assumption
of conditional independence of the variables used to describe individuals, the
probability P(b | b') can be factored as follows:
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where P(bi | b') denotes the probability of observing the fact bi given b'. Suppose
that bi is [xi=Valuei]. If b' contains the conjunct [xi=Value'i], P(bi | b') is the
probability that the real value was Value'i, but we observed Valuei. Unfortunately,
the last equation causes pragmatism to rear its ugly head. Indeed it requires
knowledge on the conditional probabilities P(bi | b'1∧ b'2∧ … ∧ b'n). To lighten
the burden, we assume that bi depends exclusively on [xi=Value'i]. Thus we have:

P(bi  | b') = P([xi=Valuei] | [xi=Value'i])



This probability can be interpreted as the similarity between [xi=Valuei] and
[xi=Value'i], in the sense that the more similar they are, the higher

P(bi  | b'i) = P([xi=Valuei] | [xi=Value'i])

Given:

1. a probability distribution of the values in the domain of xi, and

2. a distance function δi defined on the domain itself, than P(bi | b') can be
defined as follows:

P(bi | b') = P([xi=Valuei] | [xi=Value'i]) = P(δi (Value'i, X) ≥ δ(Value'i, Valuei))

that is, P(bi | b') is the probability of observing a greater distortion than that
existing between Valuei and Value'i.

Note that when Valuei = Value'i it happens that δi (Value'i, X)≥δ i(Value'i, Valuei)
= δ i(Value'i, Value'i) =0 for any value taken by X, thus:

P(bi | b') = 1

For instance, assuming that δi is the city block distance for nominal variables:

δ i x y
otherwise
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and that the values in the domain Oi are uniformly distributed, then:

P([xi = Valuei] | [xi = Value'i]) = 
O   1

O
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This result is coherent with our intuition that the larger the size of Oi the higher
the probability of observing a value different from Value'i.

It is interesting to note that all distance functions equivalent to δi lead to the same
result. Thus our formulation of flexible matching is scale-invariant.

To sum up,
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When b contains a missing value [xi=?] we can say that the information on
xi is missing or unknown. In this case P(bi | b') is computed as the expected value
of P([xi=Value] | b'), where Value is one of the values in the domain Oi, that is
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where the summation should be intended as an integral for continuos-valued
variables. For instance, for nominal variables with a city block distance δi we
have:

P([xi = ?] | [xi = Value'i]) = 
2

i

i
2

i

O

1O  O +−
.

A thorough presentation of the problem of missing data is given in (Esposito,
Malerba & Semeraro 1991b).
The definition of flexible matching can be easily extended in order to deal with
logical dependencies between variables. Indeed, the main change in the definition
concerns the space Sa, since only those BSOs b such that Match(a,b)=1 and that
satisfy the logical dependencies should be considered.

3 Experimental results

In order to show how the definition of flexible matching can be used, we
considered a data set concerning credit card applications. The data set is
distributed with the C4.5 decision tree learning system (Quinlan 1993) and
contains fifteen variables whose names and values have been changed to
meaningless symbols to protect confidentiality of the data. The sixteenth variable
concerns the class of the credit card application: positive in case of approval of
credit facilities, negative otherwise. By using the systems C4.5 and C4.5rules it is
possible to learn some classification rules for each class. In particular rules
learned from a training set of 490 cases are:

Rule Class Th. Conditions
41 - 0.89 [A3 > 1.54] ∧ [ A9 = f ] ∧ [ A4 ∈ {u, y}] ∧

∧ [A6∈{c,d, cc, i, j, k, m, r, q, w, e, aa, ff}]
43 - 0.85 [ A4 ∈ {u, y}] ∧ [ A8 <= 1.71 ] ∧[ A9 = f ]
6 - 0.95 [ A3 <= 0.835] ∧ [ A6 ∈ {c,d,i,k,m,q,w,e,aa }] ∧

 ∧ [ A7 ∈ {v,bb}] ∧ [A14 > 102] ∧ [A15 <= 500]
30 + 1.0 [ A9 = t ]
34 + 1.0 [A3 <= 0.125 ] ∧ [A14 > 221 ]
46 + 1.0 [ A4 ∈ {l} ]

Such rules can be easily represented by means of BSOs. For instance, the second
rule can be represented as follows:

[A1 = *] ∧ ... ∧ [A3 = *] ∧ [A4 = {u,y}] ∧ [A5 =*] ∧ … ∧ [A7=*] ∧
[ A8 = [0.0 .. 1.71] ]  ∧ [A9 = {f}] ∧ [A10 = *] ∧ ... ∧  [A15 = * ]



where “*” stands for any value of the domain. The thresholds to be used in the
flexible matching are estimated on the training set itself and are reported in the
third column (Th.) of the table above. It is worthwhile to observe that all
thresholds for class “+”  equals 1.0, since induced rules are too specific and no
condition can be relaxed without covering several observations of class “-”. In
order to test the validity of the approach, both the canonical and the flexible
matching with estimated thresholds are applied to an independent set of 200 new
cases distributed with C4.5, as in the previous case. The experimental results are
reported below:

rule 41 43 6 30 34 46
canonical 46/1 65/4 23/13 83/27 7/3 0/0
flexible 86/5 80/5 32/16 83/27 7/3 0/0

where each pair m/n represents the number of correct/wrong classifications.

As can be noticed, the application of a flexible matching leads to a significant
increase of correct classifications, still keeping the misclassification rate low.
Furthermore, from the table we can draw the conclusion that flexible matching
cannot improve the performance of “bad” classification rules, such as rule 46. On
the contrary, it can be profitably exploited to relax the conditions expressed in
rules “good enough”, without restarting a new learning process in order to build
rules that classify uncovered cases.

As future work we intend to validate the proposed approach on other datasets.
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