
Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

Learning Logic Programs for Layout Analysis Correction

Margherita Berardi BERARDI@DI.UNIBA.IT
Michelangelo Ceci CECI@DI.UNIBA.IT
Floriana Esposito ESPOSITO@DI.UNIBA.IT
Donato Malerba MALERBA@DI.UNIBA.IT

Dipartimento di Informatica, University of Bari, Via Orabona 4, 70126 Bari, Italy

Abstract
Layout analysis is the process of extracting a
hierarchical structure describing the layout of a
page. In the system WISDOM++, the layout
analysis is performed in two steps: firstly, the
global analysis determines possible areas
containing paragraphs, sections, columns, figures
and tables, and secondly, the local analysis
groups together blocks that possibly fall within
the same area. The result of the local analysis
process strongly depends on the quality of the
results of the first step. We investigate the
possibility of supporting the user during the
correction of the results of the global analysis.
This is done by automatically generating training
examples of action selections from the sequence
of user actions, and then by learning action
selection rules for layout correction. Rules are
expressed as a logic program whose induction
demands the careful application of ILP
techniques. Experimental results on a set of
multi-page documents shed evidence on the
difficulty of the learning task tackled and pose
new problems in learning control rules for
adaptive interfaces.

1. Background and motivation

Strategies for the extraction of layout analysis have been
traditionally classified as top-down or bottom-up (Srihari
& Zack, 1986). In top-down methods the document image
is repeatedly decomposed into smaller and smaller
components, while in bottom-up methods basic layout
components are extracted from bitmaps and then grouped
together into larger blocks on the basis of their
characteristics. In WISDOM++, a document image
analysis system that can transform paper documents into
XML format (Altamura, Esposito & Malerba, 2001), the
applied page decomposition method is hybrid, since it
combines a top-down approach to segment the document

image and a bottom-up layout analysis method to
assemble basic blocks into frames.

Some attempts to learn the layout structure from a set of
training examples have also been reported in the literature
(Dengel, 1993; Dengel & Dubiel, 1995; Kise, 1993;
Walischewski 1997). They are based on ad-hoc learning
algorithms, which learn particular data structures, such as
geometric trees and tree grammars. Results are promising,
although it has been proven that good layout structures
could also be obtained by exploiting generic knowledge
on typographic conventions (Esposito, Malerba &
Semeraro, 1995). This is the case of WISDOM++, which
analyzes the layout in two steps:

1. A global analysis of the document image, in order to
determine possible areas containing paragraphs, sections,
columns, figures and tables. This step is based on an
iterative process, in which the vertical and horizontal
histograms of text blocks are alternately analyzed, in
order to detect columns and sections/paragraphs,
respectively.

2. A local analysis of the document to group together
blocks that possibly fall within the same area. Generic
knowledge on west-style typesetting conventions is
exploited to group blocks together, such as “the first line
of a paragraph can be indented” and “in a justified text,
the last line of a paragraph can be shorter than the
previous one”.

Experimental results proved the effectiveness of this
knowledge-based approach on images of the first page of
papers published in conference proceedings and journals
(Altamura, Esposito & Malerba, 2001). However,
performance degenerates when the system is tested on
intermediate pages of multi-page articles, where the
structure is much more variable, due to the presence of
formulae, images, and drawings that can stretch over
more than one column, or are quite close. The majority of
errors made by the layout analysis module were in the
global analysis step, while the local analysis step
performed satisfactorily when the result of the global
analysis was correct.

In this paper, we investigate the possibility of supporting
the user during the correction of the results of the global
analysis. This is done by allowing the user to correct the
results of the global analysis and then by learning rules
for layout correction from his/her sequence of actions.

This approach differs from those that learn the layout
structure from scratch, since the goal is to learn what the
“errors” are which are performed by the automated global
analysis process that the user corrects. Other document
processing systems allow users to correct the result of the
layout analysis; nevertheless WISDOM++ is the only one
that tries to learn corrective actions from user interaction
with the system.

The problem we intend to solve is also different from
learning search control rules in Artificial Intelligence
Planning (AIP). In AIP an initial state and a goal are
given and the task is to find a sequence of actions that
maps the state into the goal by searching through a list of
domain actions. Control rules are learned from plans
(automatically) generated by a given planner for a set of
initial states and goals. They are then used either to
substitute the planner (Khardon, 1999) or to assist the
search (Huang, Selman & Kautz, 2000). In our case, plans
are manually generated by the user when he/she corrects
the result of the global layout analysis. The initial states
are automatically determined by the system WISDOM++,
while the goals are implicitly defined by the user during
his/her manual correction. Goals are not known for testing
documents, therefore, the result of the learning algorithm
can neither replace the planner nor assist it. Inductive
learning algorithms can only be applied to generalize the
set of preconditions for the applicability of domain
actions, independently of the final goal.

In the following section, we describe the layout correction
operations. Section 3 explains the automated generation
of training examples, while Section 4 briefly introduces
the learning strategy. Experimental results are reported in
Section 5 and discussed in Section 6, together with
current limitations and new research goals.

2. Correcting the layout

Global analysis aims to determine the general layout
structure of a page and operates on a tree-based
representation of nested columns and sections. The levels
of columns and sections are alternated (Figure 1), which
means that a column contains sections, while a section
contains columns. At the end of the global analysis, the
user can only see the sections and columns that have been
considered atomic, that is, not subject to further
decomposition (Figure 2). The user can correct this result
by means of three different operations:

�� Horizontal splitting: a column/section is cut
horizontally.

�� Vertical splitting: a column/section is cut vertically.

�� Grouping: two sections/columns are merged together.

The cut point in the two splitting operations is
automatically determined by computing either the
horizontal or the vertical histogram on the basic blocks
returned by the segmentation algorithm. The horizontal
(vertical) cut point corresponds to the largest gap between
two consecutive bins in the horizontal (vertical)
histogram. Therefore, splitting operations can be
described by means of a unary function, split(X), where X
represents the column/section to be split and the range is
the set {horizontal, vertical, no_split}.

The grouping operation, which can be described by means
of a binary predicate group(A,B), is applicable to two
sections (columns) A and B and returns a new section
(column) C, whose boundary is determined as follows.
Let (leftX, topX) and (bottomX, rightX) be the coordinates of
the top-left and bottom-right vertices of a column/section
X, respectively.1 Then:

leftC= min(leftA, leftB), rightC=max(rightA,rightB),
topC=min(topA,topB), bottomC=max(bottomA,bottomB).

—————
1 The origin of the coordinate system is in the top left-hand corner.

Column

level

Column

level

Section

level

Section

level

c2

a7
c5

a4
c6

a5

a6

a3

c1

a8

Document

c2 c1

a7 a3
a4

c5 c6

a8 a5 a6

document

Figure 1. Layout tree. Columns and sections are alternated.

Figure 2. Results of the global analysis process: one column
(left) includes two sections (right). The result of the local
analysis process is reported in the background.

c1
s1

s2

Grouping is possible only if the following two conditions
are satisfied:

1. C does not overlap another section (column) in the
document.

2. A and B are nested in the same column (section).

After each splitting/grouping operation, WISDOM++
recomputes the result of the local analysis process, so that
the user can immediately perceive the final effect of the
requested correction and can decide whether to confirm
the correction or not.

3. Representing corrections

From the user interaction, WISDOM++ implicitly
generates some training observations describing when and
how the user intended to correct the result of the global
analysis. These training observations are used to learn
correction rules of the result of the global analysis, as
explained in the next section.

The simplest representation describes, for each training
observation, the page layout at the i-th correction step and
the corrective operation performed by the user on that
layout. Therefore, if the user performs n-1 corrective
operations, n observations are generated. The last one
corresponds to the page layout accepted by the user. In
the learning phase, this representation may lead the
system to generate rules which only take into account the
user’s exact correction sequence. However, several
alternative correction sequences, which lead to the same
result, may also be possible. If they are not considered,
the learning strategy will suffer from data overfitting
problems. This issue was already discussed in a
preliminary work (Malerba, Esposito & Altamura, 2002).

A more sophisticated representation, which takes into
account alternative correction sequences, is based on the
commutativity of some corrective operations. When the
sequential order of two or more operations is irrelevant
for the final result, only one training observation can be
generated, such that all commutative operations are
associated to the page layout. However, in this
representation, it is crucial to use a method for the
discovery of alternative correction sequences.

Before formally describing the method, some useful
notations are introduced.

Let �(P) be the space of possible layout trees of a page P.
Each operation can be defined as a function
O:�(P)��(P), which transforms a layout tree T1��(P)
into the tree T2=O(T1)��(P), such that T2 is derived from
T1 by applying a split/group operator to a specific column
or section. Each function O can be partially defined, since
not all operations are admissible (see previous section).
The set of admissible operations for T1��(P) will be
denoted as A(T1).

Def. Independence between operations
Let O1 and O2 be two operations defined on �(P) and
T��(P). O1 and O2 are independent w.r.t the tree T iff
O1�A(T), O1�A(O2(T)), O2�A(T), O2�A(O1(T)) and
O1(O2(T))=O2(O1(T)).

When a user corrects the global analysis, he/she performs
a sequence of operations, not all of which are relevant.
For example, if a user performs a grouping on two blocks
and then a splitting on the resulting one, the page layout
might remain unchanged and the two operations would
annul each other. More formally, the following definitions
can be given:

Def. Alternative sequence of operations
Let S1 be a sequence of operations S1:=(O1,O2…Om-1),
S2=(Oi1,Oi2…Oin-1) is an alternative sequence of
operations w.r.t. to S1 and to an initial layout tree
T1��(P) iff S2(T1)=S1(T1), that is Om-1(…O2(O1(T1))) =
Oin-1(…Oi2(Oi1(T1))), and n�m.

Def. Minimal alternative sequence of operations
Let {S1,S2,…,Sp} be the finite set of all alternative
sequences of operations w.r.t. a sequence of operations S
and an initial layout tree T1��(P). Si1,Si2 , Sik, 1�k�p are
minimal alternative sequences of operations iff
d:=|Si1|=|Si2|=…= |Sik| and �i�[1..p]: d�|Si|.

When a user corrects the global analysis, WISDOM++
extracts a minimal alternative sequence of operations
S:=(O1,O2…On-1), such that:

nTOOTOT n�� ��������� 	121 ...21 ,

where T1 is the initial layout tree produced by the global
layout analysis, while Tn is the final layout tree that the
user considers to be corrected. Henceforth, the sequence
of operations used for the generation of training
observations will be considered minimal.

The operation Oi can be commuted with the operation Oj,
1�j<i�n, if �k, j�k<i, Ok and Oi are independent w.r.t. Tk.
When two operations can be commuted, a permutation S'
of S exists, such that when it is applied to T1 it produces
Tn. The permutation S' shares a prefix and a suffix with S.
This can be graphically represented as follows:

n
suffix

OO
iO

O

j
prefix

OO
1 TTTT

S

S 1n1i
1jk

1j
j1

��� ���� ����� ���� �� �� ���� ��
��� ��

�� ��
��������

	�

�

�

...
...

...... .

In an extreme situation, the prefix is only T1, while the
suffix is only Tn. Therefore, the set of all permutations S'
of S, obtained by commuting independent operations,
define a state graph, where there is only one node with
null indegree, namely T1, and only one node with no null
outdegree, that is, Tn. Nodes in the state graph are labelled
with layout trees, while directed edges are labelled with
admissible operations. Every path from the root to the leaf
represents a sequence of operations that, applied to the
starting layout tree, generates the same corrected layout
tree. An internal node Tj (1�j�n-1) has a number of

children m, depending on the number of independent
operations �

mlll OOO ,...,,
21

 of S w.r.t. Tj, such that

ilO 1�i�m has not been applied in the path from the root
T1 to Tj.

For instance, if the user performs three operations to
obtain the correct layout tree T4

TOTOTOT 4321
321 �����������

and if O2 and O3 can be commuted, then the state graph
reported below can be built:

4O
5

O

O
3

O

2
O

1 T
T

TTT
23

32
1

��������

��������
��� .

The graph shows the sequences of operations allowed to
obtain the layout tree T4.

Wisdom++ stores the sequence of operations performed
by the user O1,O2…On-1and the layout trees T1 and Tn. On
the basis of this information it builds the state graph and
computes the minimal alternative sequences of operations
in order to generate a set of training observations.
Minimality of the sequence of operation is necessary to
prevent the system from generating “clashing” examples,
that is, different operations applied to the same
component of identical layout structures.

The definition of a suitable representation language for
the global layout structure is a key issue. In this work we
restrict this representation to the lowest column and
section levels in the tree structure extracted by the global
analysis and we deliberately ignore other levels and their
composition hierarchy. Nevertheless, describing this
portion of the layout structure is not straightforward, since
the columns and sections are spatially related and the
propositional representation languages cannot render
these relations. Therefore, we resort to the application of a
first-order logic language, where unary function symbols,
called attributes, are used to describe properties of a
single layout component (e.g., height), while binary
predicate and function symbols, called relations, are used
to express spatial relationships among layout components
(e.g., part-of).

The following is an example of a training observation
automatically generated by WISDOM++:

split(c1)=horizontal, group(s1,s2)=false,
split(s1)=no_split, split(s2)=no_split �
width_s(s1)=552, width_s(s2)=552,
width_c(c1)=552, height_s(s1)=8,
height_s(s2)=723, height_c(c1)=852,
x_pos_centre_s(s1)=296, x_pos_centre_s(s2)=296,
x_pos_centre_c(c1)=296, y_pos_centre_s(s1)=22,
y_pos_centre_s(s2)=409, y_pos_centre_c(c1)=426,
s_on_top_s(s1,s2)=true, part_of(c1,s1)=true,
part_of(c1,s2)=true,no_blocks_s(s1)=2,
no_blocks_s(s2)=108, no_blocks_c(c1)=110,
per_text_s(s1)=100, per_text_s(s2)=83,
per_text_c(c1)=84.

This is a multiple-head ground clause, which has a
conjunction of literals in the head. It describes the
corrections applicable to the page layout in Figure 1,
where two sections and one column were originally
found. The horizontal splitting of the column
(split(c1)=horizontal) is the first correction performed by
the user (Figure 3). Since no other operation is
independent of it, it is the only positive example of
split/group operation. Indeed, the representation by
multiple-head clauses allows us to easily express a form
of concurrency in the execution of independent
operations. The multiple-head clause also shows that the
two sections s1 and s2 should be neither split (literals
split(s1)=no_split and split(s2)=no_split) nor grouped
(literal group(s1,s2)=false). Many other literals, such as
group(c1,s2)=false, group(s1,c1)=false and
group(c1,c1)=false, have not been generated, since they
do not represent admissible operations.

The body represents the layout tree as attributes and
relations. The prefixes (suffixes) c_ and s_ (_c and _s) of
function symbols specify whether the involved arguments
are columns or sections. The column to be split is 552
pixels wide and 852 pixels high, has a center located at
the point (296,426), and includes 110 basic blocks and the
two sections s1 and s2, which are one on top of the other.
The percentage of the area covered by the text blocks,
enclosed by the column, is 84%.

4. The learning strategy

The inductive learning problem to be solved concerns the
concepts split(X)=horizontal, split(X)=vertical and
group(X,Y)=true, since we are interested in finding rules
which predict both when to split a column/section
horizontally/vertically and when to group two
columns/sections. No rule is generated for the case
split(X)=no_split and group(X,Y)=false. In other words,
we are interested in action selection rules and not in
action rejection rules.

Figure 3. Horizontal split of the column (left) and vertical
split of column c2 (right). The result of the layout analysis
process is in the background.

c2
c1

c2
c1

c3

Rules for the correction of the layout analysis can be
automatically learned by means of an ILP or relational
learning system. In this work, the system ATRE
(http://www.di.uniba.it/~malerba/software/atre) has been
used (Malerba, Esposito & Lisi, 1998). It solves the
following learning problem:

Given
�� a set of concepts C1, C2, �, Cr to be learned,
�� a set of observations O described in a language LO,
�� a background knowledge BK expressed in a language

LBK,
�� a language of hypotheses LH,
�� a generalization model � over the space of hypotheses,
�� a user’s preference criterion PC,
Find
a (possibly recursive) logical theory T for the concepts C1,
C2, �, Cr, such that T is complete and consistent with
respect to O and satisfies the preference criterion PC.

The completeness property holds when the theory T
explains all observations in O of the r concepts Ci, while
the consistency property holds when the theory T explains
no counter-example in O of any concept Ci. The
satisfaction of these properties guarantees the correctness
of the induced theory with respect to O.

The preservation of the consistency property explains
why it is important not to generate clashing examples, by
computing minimal sequences of operations, as observed
in the previous section.

In ATRE, observations are represented by means of
ground multiple-head clauses, called objects. All literals
in the head of the clause are called examples of the
concepts C1, C2, �, Cr. They can be considered either
positive or negative according to the learning goal. In this
application domain, the set of concepts to be learned is
split(X)=horizontal, split(X)=vertical, group(X,Y)=true
and no background knowledge is available.

The generalization model provides the basis for
organizing the search space, since it establishes when a
hypothesis explains a positive/negative example and when
a hypothesis is more general/specific than another. The
generalization model adopted by ATRE, called
generalized implication, is explained in (Esposito,
Malerba & Lisi, 2000).

The preference criterion PC is a set of conditions used to
discard/favour some solutions while searching for a
consistent hypothesis. In this work short rules, which
explain a high number of positive examples and a low
number of negative examples, are preferred.

It is noteworthy that the learning strategy implemented in
ATRE is not affected by imbalanced data, since the goal
is not to maximize the accuracy (Provost, 2000) but to
generate consistent theories. As explained in the next
section, this is an important aspect of our application.
Other systems that suffer from this problem, such as Tilde

(Blockeel & De Raedt, 1998), proved unsuitable, since
they generated only a trivial classifier covering all
positive and negative examples when tested on this
learning task.

5. Experimental results

To investigate the applicability of the proposed solution
we considered twenty-four papers, published as either
regular or short, in the IEEE Transactions on Pattern
Analysis and Machine Intelligence, in the January and
February issues of 1996. Each paper is a multi-page
document; therefore, we processed 210 document images
in all. For 148 document images the user performed some
corrections. The average number of corrections is 2.47
(i.e. 366/148) per corrected page. In fact, some
intermediate pages of multi-page documents are the most
critical and may require several operations to correct the
column/section structure. The number of objects for
ATRE corresponds to the total number of nodes in the
state graph of all pages, namely 210 leaves (one for each
corrected page layout) and 514 internal nodes. The total
number of examples is 36,549, which corresponds to the
total number of literals in the multiple-head clauses.
Given the set of concepts to be learned, only 736 out of
36,549 examples are positive and correspond to either
corrective actions actually performed by the user
(vertical/horizontal splitting or grouping) or corrective
actions generated automatically by the system, thanks to
its independence property. Negative examples are
implicitly created from what the user did not do.

The performance of the learning task is evaluated by
means of a 6-fold cross-validation, that is, the set of
twenty-four documents is first divided into six blocks (or
folds) of four documents (Table 1), and then, for every
block, ATRE is trained on the remaining blocks and
tested on the hold-out block. For each learning problem,
the number of omission/commission errors is recorded.
Omission errors occur when corrective actions on the
page layout are missed, while commission errors occur
when wrong actions are “recommended” by a rule.

Experimental results are reported in Table 2 for each trial,
and the average number of omission and commission
errors is also given. Two conclusions can be drawn from
Table 2. Firstly, there is a high level of variability among
the trials. For instance, the percentage of omission errors
of the rule for grouping in the second trial is relatively
low (about 10.8%), while the same percentage for the
third trial is quite high (about 73.5%). A possible
explanation might be the heterogeneous correction
procedures adopted by the different users who worked on
the correction of the document layouts. Secondly, the
percentage of commission errors is very low with respect
to the percentage of omission errors. This means that
learned rules are generally specific, because of the low
percentage of positive examples (about 2%), with respect
to the total number of training examples.

Table 1. Distribution of pages and examples per document
grouped by six folds.

 Name of the
multi-page
document

No. of
pages

No. of
 literals

No. of
horizonta

l splits

No. of
vertical
splits

No.
of

grou
ps

Total
number

of
exampl

es
TPAMI4 14 3534 7 6 0 689

TPAMI10 3 1960 0 4 0 393

TPAMI12 6 4710 6 3 3 979

TPAMI24 6 6003 4 2 6 1248

Fold
No. 1

Total 29 16207 17 15 9 3309

TPAMI7 6 4790 4 1 16 855

TPAMI13 3 1601 0 0 2 309

TPAMI18 6 9638 2 13 10 1930

TPAMI23 7 4884 1 1 9 897

Fold
No. 2

Total 22 20913 7 15 37 3991

TPAMI2 8 8053 6 12 15 1453

TPAMI8 5 6242 5 13 4 1261

TPAMI11 6 1480 1 1 1 271

TPAMI14 10 9163 5 4 14 1666

Fold
No. 3

Total 29 24938 17 30 34 4651

TPAMI3 15 4626 10 7 5 831

TPAMI16 9 9814 2 14 50 1762

TPAMI19 20 24638 3 18 45 4641

TPAMI20 14 22556 2 20 42 4219

Fold
No. 4

Total 58 61634 17 59 142 11453

TPAMI1 14 13053 16 8 28 2473

TPAMI6 3 1475 12 7 0 223

TPAMI17 13 11710 81 14 0 1931

TPAMI22 5 3242 8 1 3 589

Fold
No. 5

Total 35 29480 117 30 31 5216

TPAMI5 6 5604 18 2 5 979

TPAMI9 5 2220 1 3 3 403

TPAMI15 15 31369 8 45 63 5642

TPAMI21 11 4680 4 1 5 905

Fold
No. 6

Total 37 43873 31 51 76 7929

Total 24 docs 210 197045 206 200 329 36549

Table 2. Experimental results.

Vertical splitting Horizontal splitting Grouping
Trial

omiss. comm. omiss. comm. omiss. comm.
1 8/15 7/3294 10/17 11/3292 4/9 8/3300
2 11/15 23/3976 4/7 7/3984 4/37 21/3954
3 22/30 6/4621 12/17 4/4634 20/34 55/4617
4 33/59 32/11394 6/17 66/11436 94/142 89/11311
5 17/30 24/5186 96/117 33/5099 14/31 23/5185
6 28/51 9/7878 26/31 2/7898 18/77 77/7852

Average% 61.25 0.30 64.63 0.31 41.47 0.70
St.dev.% 9.43 0.19 18.22 0.26 20.99 0.36

Table 3. Experimental results. Complexity of the learned theory.

Vertical Splitting Horizontal Splitting Grouping
Trial

No of
clauses

Positive
examples

No of
clauses

Positive
examples

No of
clauses

Positive
exampl

es
1 25 185 29 189 40 320
2 29 185 34 199 31 292
3 28 170 26 189 37 295
4 26 141 31 189 26 187
5 26 170 22 89 46 298
6 23 149 26 175 33 253

Avg. No
of clauses

per
example

6.38 6.09 7.79

Some statistics concerning the learned theories are
reported in Table3. It is noteworthy that the average
number of examples covered by a rule is between 6 and 8
for all three concepts. However, the variance is high.
Some rules actually cover about 20-30% of training
examples, while other cover only one example.
Specificity of learned clauses is due to two factors: firstly,
the limited number of positive examples used in the
training set, and secondly, the fact that ATRE is asked to
generate a complete theory, that is a set of clauses that
explain all positive examples.

For the sake of completeness, some clauses for the three
concepts are reported below:

1. split(X1)=vertical �
width_s(X1)�[289.0..535.0],
s_on_top_s(X2,X1)=true,

per_text_s(X2)�[75.0..88.0].
2. split(X1)=horizontal �

height_c(X1)�[872.0..876.0],
width_c(X1)�[536.0..546.0],
x_pos_centre_c(X1)�[275.0..314.0].

3. group(X2,X1)=true �
c_to_right_c(X2,X1)=true,

width_c(X2)�[1.0..11.0],
height_c(X2)�[40.0..75.0].

The interpretation of these clauses is straightforward. For
instance, the first clause states that «sections with width
between 289 and 535 pixels that are under another section
with a percentage of text between 75% and 88% should
be vertically split». This rule captures the fact that a
section spans over two columns (it is quite large, indeed)
in documents that are organized in two columns. The
geometrical relation with another section whose content is
mostly text excludes the situation in which figures
spanning over two columns are also present in the training
documents. The second clause states that high and large
columns, centered with respect to the page, should be
horizontally split to separate the running head from the
body of the paper. It is noteworthy that the first and third
clauses involve some relations and could be generated
only by relational learning systems such as ATRE.

6. Discussion

Experimental results prove the difficulty of this learning
task, which is characterized by a relatively low percentage
of positive training examples for sometimes-complex
correction tasks. Learned theories also show that for this
task it is important to consider the spatial relations
existing between columns and sections. Such spatial
relations can be properly modelled in a first-order logic
formalism, which requires the application of ILP or
relational learning systems. However, the training set is
very imbalanced and this prevents the applicability of
some learning algorithms that optimize the predictive
accuracy, since they return trivial “no-action” rules,
which are actually more than 98% correct.
A further difficulty lies in the complexity of the
descriptions generated for each multi-page document.
This poses efficiency problems for the learning system,
which must be able to handle both numeric and symbolic
relational data.
Low performances may also be due to our attempt to learn
pre-conditions of corrective actions, which are actually
expressed as classification rules. However, corrective
actions modify the state of the world, that is, the layout
structure, while no state change is modelled by
classification rules. Predicting the result of an action (how
the state of the world changes) might be equally
important.2 However, this means that we have to learn
both pre- and post-conditions of a corrective action.
Our problem shares some similarities with that faced by
Lorenzo and Otero (2001), who also investigated issues
related to learning action selection rules in Situation
Calculus. More precisely, their problem was to learn the
predicates select(a, p, s) and reject(a, p, s), where p is a
plan and a is an action (in our case, horizontal/vertical
split or group), executed in any situation s�p. The
background knowledge includes holds/2 ground facts for
fluents at every initial situation and every goal situation,
the action theory of the domain in the form of a Situation
Calculus program together with two universal frame
axioms which describes how the world stays the same
(they are necessary to solve the well-known “frame
problem”). The main difference with our study is that the
goal is unknown when WISDOM++ applies rules to
automatically correct the layout tree. Therefore, no plan p
can be considered to define the action selection rules, and
no planning algorithm can be used to generate a plan of
action. Other two methodological differences are:

�� Reject rules, that is, conditions under which an
operation must not be performed, are not learned.

—————
2 This seems to be especially important for the splitting operations,
whose result cannot be exactly determined by considering only at the
layout tree. Indeed, WISDOM++ determines the cut point of a
horizontal/vertical split by computing the horizontal/vertical histogram
on the basic blocks returned by the segmentation algorithm. This
information used to determine cut points is external to the layout tree.

�� The objects of the world (in our case columns
and sections) should dynamically change, since
they should be added or removed as the result of
the execution of an action. For example, if the
user horizontally splits a layout tree block T1, the
resulting layout tree O(T1) has two new blocks,
instead of the split one.

Currently, learned rules are operatively used in a
production system with a forward chaining control
structure. It is implemented with a theorem prover, using
resolution to do forward chaining over a full first-order
knowledge base. The system maintains a knowledge base
(the working memory) of ground literals describing the
layout tree. Ground literals are automatically generated by
WISDOM++ after the execution of an operation. In each
cycle, the system computes the subset of rules, whose
condition part is satisfied by the current contents of the
working memory (match phase). Conflicts are solved by
selecting the first rule in the subset. Alternative strategies
have not been tried, such as recency (prefer rules that
refer to recently created working memory elements), or
operation priority (which prefers splitting to grouping or
viceversa). This is a limitation of our work and it
underlines the more general problem of how to evaluate
performance of the learned logical theory. Another aspect
not investigated in this work concerns the non-termination
of the match-act cycle of the production system. We never
observed this problem in our experiments, but it is
theoretically possible that two subsequent operations
annul each other, thus causing non termination. A simple
way to overcome this problem is to associate a step to
each operation. In this case, the splitting operations are
represented by a binary function, split(X,S), where X
represents the column/section to be split and S is an
ordinal number representing the correction process step.
Clauses learned by ATRE are range-restricted, therefore
the body of the clause will be forced to contain a literal of
the form

step(S)�[a..b],
which specifies the interval of correction steps in which
the action can be performed. Every time WISDOM++
updates the working memory, a new ground literal
step(s)=k should be added to. Finiteness of the intervals
prevents the production system from having non-
termination problems.
As a future work, we intend to investigate the possibility
of formulating the problem as goal-based. Indeed, the
performance of the complete layout analysis process (both
global and local) can be evaluated on the basis of the
number of layout components that can be associated with
a logical label, which is an interpretation of its content
(document understanding) (Malerba et al., 2001). This
means that the better the result of the document
understanding process, the better the result of the layout
analysis process. Assuming that the user corrected the
result of the global analysis to separate/group layout
components with a different/the same logical label, we

can define our abstract goal as maximizing the number of
“splittable” layout components with univocally
determined logical labels and minimizing the number of
“groupable” layout components with the same label. In
this case, a planner rather than a production system is
required in the recognition phase. It would interface both
the layout analysis module and the document understand
module, which both use logic theories induced from a set
of training examples.
Another open problem is related to dealing with different
document classes, each of which has a different page
layout structure. In this case, different classes may require
different layout corrections. Therefore, the document
class should be part of the preconditions of corrective
actions. However, the correct document class can be
typically recognized only when the layout structure is
extracted. The formulation of the problem as goal-based
can help, but the planner should now interface three
modules (layout analysis, document classification and
document understanding), thus making the planning
problem even more difficult to solve and the task of
learning search control rules much harder than learning
those reported in the machine learning literature.
Finally, more extensive experiments will be performed on
a set of documents made available by three European film
archives participating to the project Collate.

Acknowledgements
This work partially fulfills the research objectives set by
the IST-1999-20882 project COLLATE (Collaboratory
for Automation, Indexing and Retrieval of Digitized
Historical Archive Material) funded by the European
Union (http://www.collate.de). The authors also wish to
thank Lynn Rudd for her help in reading the manuscript.

References
Altamura, O., Esposito, F., & Malerba, D. (2001).

Transforming paper documents into XML format with
WISDOM++. International Journal on Document
Analysis and Recognition, 4, 2-17.

Blockeel, H., & De Raedt, L. (1998). Top-down induction
of first-order logical decision trees. Artificial
Intelligence, 101, 285-297.

Dengel, A. (1993). Initial learning of document structures.
Proceedings of the Second International Conference on
Document Analysis and Recognition, (pp. 86-90), Los
Vaqueros, CA: IEEE Computer Society Press.

Dengel, A., & Dubiel, F. (1995). Clustering and
classification of document structure – A machine
learning approach. Proceedings of the Third
International Conference on Document Analysis and
Recognition, (pp. 587-591), Los Vaqueros, CA: IEEE
Computer Society Press.

Esposito, F., Malerba, D., & Semeraro, G. (1995). A
Knowledge-Based Approach to the Layout Analysis.

Proceedings of the Third International Conference on
Document Analysis and Recognition, (pp. 466- 471),
Los Vaqueros, CA: IEEE Computer Society Press.

Esposito, F., Malerba, D., & Lisi, F.A. (2000). Induction
of recursive theories in the normal ILP setting: issues
and solutions. In J. Cussens & A. Frisch (Eds.),
Inductive Logic Programming, Lecture Notes in
Artificial Intelligence, 1866, (pp. 93-111), Berlin:
Springer.

Huang, Y.-C., Selman, B. & Kautz, H. (2000). Learning
declarative control rules for constraint-based planning.
Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, (pp. 825-830), San
Francisco: Morgan Kaufmann.

Khardon, R. (1999). Learning action strategies for
planning domains. Artificial Intelligence, 113, 125-148.

Kise, K. (1993). Incremental acquisition of knowledge
about layout structures from examples of documents.
Proceedings of the Second International Conference on
Document Analysis and Recognition, (pp. 668-671), Los
Vaqueros, CA: IEEE Computer Society Press.

Lorenzo, D., & Otero, R. (2001) Learning Logic
Programs for Action Selection in Planning. Proceedings
of the Third International Workshop on Extraction of
Knowledge from Databases (EKDB'01), EPIA 2001,
10th Portuguese Conference on Artificial Intelligence.

Malerba, D., Esposito, F., & Lisi, F.A. (1998). Learning
recursive theories with ATRE. Proceedings of the
Thirteenth European Conference on Artificial
Intelligence, (pp. 435-439), John Wiley & Sons.

Malerba, D., Esposito, F., Lisi, F.A., & Altamura, O.
(2001). Automated Discovery of Dependencies Between
Logical Components in Document Image
Understanding. Proceedings of the Sixth International
Conference on Document Analysis and Recognition,
(pp. 174-178), Los Vaqueros, CA: IEEE Computer
Society Press.

Malerba, D., Esposito, F., & Altamura, O. (2002).
Adaptive Layout Analysis of Document Images. In H.-
S. Hacid, Z.W. Ras, D.A. Zighed, Y. Kodratoff,
Foundations of Intelligent Systems, 13th International
Symposium, ISMIS'2002, Lecture Notes in Artificial
Intelligence, 2366, (pp. 526-534), Berlin: Springer.

Provost, F. (2000). Learning with Imbalanced Data Sets.
Invited paper for the AAAI'2000 Workshop on
Imbalanced Data Sets.

Srihari, S.N., & Zack, G.W. (1986). Document Image
Analysis. Proceedings of the Eighth International
Conference on Pattern Recognition, (pp. 434-436).

Walischewski, H. (1997) Automatic knowledge
acquisition for spatial document interpretation.
Proceedings of the Fourth International Conference on
Document Analysis and Recognition, (pp. 243-247), Los
Vaqueros, CA: IEEE Computer Society Press.

