
Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003. 

Learning Logic Programs for Layout Analysis Correction 

Margherita Berardi BERARDI@DI.UNIBA.IT 
Michelangelo Ceci CECI@DI.UNIBA.IT 
Floriana Esposito ESPOSITO@DI.UNIBA.IT 
Donato Malerba MALERBA@DI.UNIBA.IT 
 
Dipartimento di Informatica, University of Bari, Via Orabona 4, 70126 Bari, Italy 
 
 

Abstract 
Layout analysis is the process of extracting a 
hierarchical structure describing the layout of a 
page. In the system WISDOM++, the layout 
analysis is performed in two steps: firstly, the 
global analysis determines possible areas 
containing paragraphs, sections, columns, figures 
and tables, and secondly, the local analysis 
groups together blocks that possibly fall within 
the same area. The result of the local analysis 
process strongly depends on the quality of the 
results of the first step. We investigate the 
possibility of supporting the user during the 
correction of the results of the global analysis. 
This is done by automatically generating training 
examples of action selections from the sequence 
of user actions, and then by learning action 
selection rules for layout correction. Rules are 
expressed as a logic program whose induction 
demands the careful application of ILP 
techniques. Experimental results on a set of 
multi-page documents shed evidence on the 
difficulty of the learning task tackled and pose 
new problems in learning control rules for 
adaptive interfaces. 

1.  Background and motivation 

Strategies for the extraction of layout analysis have been 
traditionally classified as top-down or bottom-up (Srihari 
& Zack, 1986). In top-down methods the document image 
is repeatedly decomposed into smaller and smaller 
components, while in bottom-up methods basic layout 
components are extracted from bitmaps and then grouped 
together into larger blocks on the basis of their 
characteristics. In WISDOM++, a document image 
analysis system that can transform paper documents into 
XML format (Altamura, Esposito & Malerba, 2001), the 
applied page decomposition method is hybrid, since it 
combines a top-down approach to segment the document 

image and a bottom-up layout analysis method to 
assemble basic blocks into frames. 

Some attempts to learn the layout structure from a set of 
training examples have also been reported in the literature 
(Dengel, 1993; Dengel & Dubiel, 1995; Kise, 1993; 
Walischewski 1997). They are based on ad-hoc learning 
algorithms, which learn particular data structures, such as 
geometric trees and tree grammars. Results are promising, 
although it has been proven that good layout structures 
could also be obtained by exploiting generic knowledge 
on typographic conventions (Esposito, Malerba & 
Semeraro, 1995). This is the case of WISDOM++, which 
analyzes the layout in two steps: 

1. A global analysis of the document image, in order to 
determine possible areas containing paragraphs, sections, 
columns, figures and tables. This step is based on an 
iterative process, in which the vertical and horizontal 
histograms of text blocks are alternately analyzed, in 
order to detect columns and sections/paragraphs, 
respectively.  

2. A local analysis of the document to group together 
blocks that possibly fall within the same area. Generic 
knowledge on west-style typesetting conventions is 
exploited to group blocks together, such as “the first line 
of a paragraph can be indented” and “in a justified text, 
the last line of a paragraph can be shorter than the 
previous one”. 

Experimental results proved the effectiveness of this 
knowledge-based approach on images of the first page of 
papers published in conference proceedings and journals 
(Altamura, Esposito & Malerba, 2001). However, 
performance degenerates when the system is tested on 
intermediate pages of multi-page articles, where the 
structure is much more variable, due to the presence of 
formulae, images, and drawings that can stretch over 
more than one column, or are quite close. The majority of 
errors made by the layout analysis module were in the 
global analysis step, while the local analysis step 
performed satisfactorily when the result of the global 
analysis was correct. 



 

 

In this paper, we investigate the possibility of supporting 
the user during the correction of the results of the global 
analysis. This is done by allowing the user to correct the 
results of the global analysis and then by learning rules 
for layout correction from his/her sequence of actions.  

This approach differs from those that learn the layout 
structure from scratch, since the goal is to learn what the 
“errors” are which are performed by the automated global 
analysis process that the user corrects. Other document 
processing systems allow users to correct the result of the 
layout analysis; nevertheless WISDOM++ is the only one 
that tries to learn corrective actions from user interaction 
with the system. 

The problem we intend to solve is also different from 
learning search control rules in Artificial Intelligence 
Planning (AIP). In AIP an initial state and a goal are 
given and the task is to find a sequence of actions that 
maps the state into the goal by searching through a list of 
domain actions. Control rules are learned from plans 
(automatically) generated by a given planner for a set of 
initial states and goals. They are then used either to 
substitute the planner (Khardon, 1999) or to assist the 
search (Huang, Selman & Kautz, 2000). In our case, plans 
are manually generated by the user when he/she corrects 
the result of the global layout analysis. The initial states 
are automatically determined by the system WISDOM++, 
while the goals are implicitly defined by the user during 
his/her manual correction. Goals are not known for testing 
documents, therefore, the result of the learning algorithm 
can neither replace the planner nor assist it. Inductive 
learning algorithms can only be applied to generalize the 
set of preconditions for the applicability of domain 
actions, independently of the final goal.   

In the following section, we describe the layout correction 
operations. Section 3 explains the automated generation 
of training examples, while Section 4 briefly introduces 
the learning strategy. Experimental results are reported in 
Section 5 and discussed in Section 6, together with 
current limitations and new research goals.  

2.  Correcting the layout 

Global analysis aims to determine the general layout 
structure of a page and operates on a tree-based 
representation of nested columns and sections. The levels 
of columns and sections are alternated (Figure 1), which 
means that a column contains sections, while a section 
contains columns. At the end of the global analysis, the 
user can only see the sections and columns that have been 
considered atomic, that is, not subject to further 
decomposition (Figure 2). The user can correct this result 
by means of three different operations: 

�� Horizontal splitting: a column/section is cut 
horizontally. 

�� Vertical splitting: a column/section is cut vertically. 

�� Grouping: two sections/columns are merged together.  

The cut point in the two splitting operations is 
automatically determined by computing either the 
horizontal or the vertical histogram on the basic blocks 
returned by the segmentation algorithm. The horizontal 
(vertical) cut point corresponds to the largest gap between 
two consecutive bins in the horizontal (vertical) 
histogram. Therefore, splitting operations can be 
described by means of a unary function, split(X), where X 
represents the column/section to be split and the range is 
the set {horizontal, vertical, no_split}.   

The grouping operation, which can be described by means 
of a binary predicate group(A,B), is applicable to two 
sections (columns) A and B and returns a new section 
(column) C, whose boundary is determined as follows. 
Let (leftX, topX) and (bottomX, rightX) be the coordinates of 
the top-left and bottom-right vertices of a column/section 
X, respectively.1 Then: 

leftC= min(leftA, leftB),  rightC=max(rightA,rightB), 
topC=min(topA,topB),  bottomC=max(bottomA,bottomB). 

————— 
1 The origin of the coordinate system is in the top left-hand corner. 
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Figure 1. Layout tree. Columns and sections are alternated. 

Figure 2. Results of the global analysis process: one column 
(left) includes two sections (right). The result of the local 
analysis process is reported in the background. 
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Grouping is possible only if the following two conditions 
are satisfied: 

1. C does not overlap another section (column) in the 
document. 

2. A and B are nested in the same column (section). 

After each splitting/grouping operation, WISDOM++ 
recomputes the result of the local analysis process, so that 
the user can immediately perceive the final effect of the 
requested correction and can decide whether to confirm 
the correction or not. 

3.  Representing corrections  

From the user interaction, WISDOM++ implicitly 
generates some training observations describing when and 
how the user intended to correct the result of the global 
analysis. These training observations are used to learn 
correction rules of the result of the global analysis, as 
explained in the next section. 

The simplest representation describes, for each training 
observation, the page layout at the i-th correction step and 
the corrective operation performed by the user on that 
layout. Therefore, if the user performs n-1 corrective 
operations, n observations are generated. The last one 
corresponds to the page layout accepted by the user. In 
the learning phase, this representation may lead the 
system to generate rules which only take into account the 
user’s exact correction sequence. However, several 
alternative correction sequences, which lead to the same 
result, may also be possible. If they are not considered, 
the learning strategy will suffer from data overfitting 
problems. This issue was already discussed in a 
preliminary work (Malerba, Esposito & Altamura, 2002).  

A more sophisticated representation, which takes into 
account alternative correction sequences, is based on the 
commutativity of some corrective operations. When the 
sequential order of two or more operations is irrelevant 
for the final result, only one training observation can be 
generated, such that all commutative operations are 
associated to the page layout. However, in this 
representation, it is crucial to use a method for the 
discovery of alternative correction sequences.   

Before formally describing the method, some useful 
notations are introduced.  

Let �(P) be the space of possible layout trees of a page P. 
Each operation can be defined as a function 
O:�(P)��(P), which transforms a layout tree T1��(P) 
into the tree T2=O(T1)��(P), such that T2 is derived from 
T1 by applying a split/group operator to a specific column 
or section. Each function O can be partially defined, since 
not all operations are admissible (see previous section). 
The set of admissible operations for T1��(P) will be 
denoted as A(T1). 

Def. Independence between operations  
Let O1 and O2 be two operations defined on �(P) and 
T��(P). O1 and O2 are independent w.r.t the tree T iff 
O1�A(T), O1�A(O2(T)), O2�A(T),  O2�A(O1(T)) and 
O1(O2(T))=O2(O1(T)).  

When a user corrects the global analysis, he/she performs 
a sequence of operations, not all of which are relevant. 
For example, if a user performs a grouping on two blocks 
and then a splitting on the resulting one, the page layout 
might remain unchanged and the two operations would 
annul each other. More formally, the following definitions 
can be given: 

Def. Alternative sequence of operations  
Let S1 be a sequence of operations S1:=(O1,O2…Om-1), 
S2=(Oi1,Oi2…Oin-1) is an alternative sequence of 
operations w.r.t. to S1 and to an initial layout tree 
T1��(P)  iff S2(T1)=S1(T1), that is Om-1(…O2(O1(T1))) = 
Oin-1(…Oi2(Oi1(T1))), and n�m.  

Def. Minimal alternative sequence of operations  
Let {S1,S2,…,Sp} be the finite set of all alternative 
sequences of operations w.r.t. a sequence of operations S 
and an initial layout tree T1��(P). Si1,Si2 , Sik, 1�k�p are  
minimal alternative sequences of operations iff  
d:=|Si1|=|Si2|=…= |Sik| and  �i�[1..p]: d�|Si|. 

When a user corrects the global analysis, WISDOM++ 
extracts a minimal alternative sequence of operations 
S:=(O1,O2…On-1), such that: 

nTOOTOT n�� ��������� 	121 ...21 , 

where T1 is the initial layout tree produced by the global 
layout analysis, while Tn is the final layout tree that the 
user considers to be corrected. Henceforth, the sequence 
of operations used for the generation of training 
observations will be considered minimal. 

The operation Oi can be commuted with the operation Oj, 
1�j<i�n, if �k, j�k<i, Ok and Oi are independent w.r.t. Tk. 
When two operations can be commuted, a permutation S' 
of S exists, such that when it is applied to T1 it produces 
Tn. The permutation S' shares a prefix and a suffix with S. 
This can be graphically represented as follows:  
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In an extreme situation, the prefix is only T1, while the 
suffix is only Tn. Therefore, the set of all permutations S' 
of S, obtained by commuting independent operations, 
define a state graph, where there is only one node with 
null indegree, namely T1, and only one node with no null 
outdegree, that is, Tn. Nodes in the state graph are labelled 
with layout trees, while directed edges are labelled with 
admissible operations. Every path from the root to the leaf 
represents a sequence of operations that, applied to the 
starting layout tree, generates the same corrected layout 
tree. An internal node Tj (1�j�n-1) has a number of 



 

 

children m, depending on the number of independent 
operations � 

mlll OOO ,...,,
21

 of S w.r.t. Tj, such that 

ilO 1�i�m has not been applied in the path from the root 
T1 to Tj. 

For instance, if the user performs three operations to 
obtain the correct layout tree T4  

TOTOTOT 4321
321 �����������  

and if O2 and O3 can be commuted, then the state graph 
reported below can be built:  
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The graph shows the sequences of operations allowed to 
obtain the layout tree T4. 

Wisdom++ stores the sequence of operations performed 
by the user O1,O2…On-1and the layout trees T1 and Tn. On 
the basis of this information it builds the state graph and 
computes the minimal alternative sequences of operations 
in order to generate a set of training observations. 
Minimality of the sequence of operation is necessary to 
prevent the system from generating “clashing” examples, 
that is, different operations applied to the same 
component of identical layout structures. 

The definition of a suitable representation language for 
the global layout structure is a key issue. In this work we 
restrict this representation to the lowest column and 
section levels in the tree structure extracted by the global 
analysis and we deliberately ignore other levels and their 
composition hierarchy. Nevertheless, describing this 
portion of the layout structure is not straightforward, since 
the columns and sections are spatially related and the 
propositional representation languages cannot render 
these relations. Therefore, we resort to the application of a 
first-order logic language, where unary function symbols, 
called attributes, are used to describe properties of a 
single layout component (e.g., height), while binary 
predicate and function symbols, called relations, are used 
to express spatial relationships among layout components 
(e.g., part-of). 

The following is an example of a training observation 
automatically generated by WISDOM++: 

split(c1)=horizontal, group(s1,s2)=false,  
split(s1)=no_split, split(s2)=no_split � 
width_s(s1)=552, width_s(s2)=552, 
width_c(c1)=552, height_s(s1)=8, 
height_s(s2)=723, height_c(c1)=852, 
x_pos_centre_s(s1)=296, x_pos_centre_s(s2)=296,  
x_pos_centre_c(c1)=296, y_pos_centre_s(s1)=22,  
y_pos_centre_s(s2)=409, y_pos_centre_c(c1)=426, 
s_on_top_s(s1,s2)=true, part_of(c1,s1)=true,  
part_of(c1,s2)=true,no_blocks_s(s1)=2,  
no_blocks_s(s2)=108, no_blocks_c(c1)=110, 
per_text_s(s1)=100, per_text_s(s2)=83,  
per_text_c(c1)=84. 

 

This is a multiple-head ground clause, which has a 
conjunction of literals in the head. It describes the 
corrections applicable to the page layout in Figure 1, 
where two sections and one column were originally 
found. The horizontal splitting of the column 
(split(c1)=horizontal) is the first correction performed by 
the user (Figure 3). Since no other operation is 
independent of it, it is the only positive example of 
split/group operation. Indeed, the representation by 
multiple-head clauses allows us to easily express a form 
of concurrency in the execution of independent 
operations. The multiple-head clause also shows that the 
two sections s1 and s2 should be neither split (literals 
split(s1)=no_split and split(s2)=no_split) nor grouped 
(literal group(s1,s2)=false). Many other literals, such as 
group(c1,s2)=false, group(s1,c1)=false and 
group(c1,c1)=false, have not been generated, since they 
do not represent admissible operations.  

The body represents the layout tree as attributes and 
relations. The prefixes (suffixes) c_ and s_ (_c and _s) of 
function symbols specify whether the involved arguments 
are columns or sections. The column to be split is 552 
pixels wide and 852 pixels high, has a center located at 
the point (296,426), and includes 110 basic blocks and the 
two sections s1 and s2, which are one on top of the other. 
The percentage of the area covered by the text blocks, 
enclosed by the column, is 84%.  

4.  The learning strategy 

The inductive learning problem to be solved concerns the 
concepts split(X)=horizontal, split(X)=vertical and 
group(X,Y)=true, since we are interested in finding rules 
which predict both when to split a column/section 
horizontally/vertically and when to group two 
columns/sections. No rule is generated for the case 
split(X)=no_split and group(X,Y)=false. In other words, 
we are interested in action selection rules and not in 
action rejection rules. 

Figure 3. Horizontal split of the column (left) and vertical 
split of column c2 (right). The result of the layout analysis 
process is in the background.  
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Rules for the correction of the layout analysis can be 
automatically learned by means of an ILP or relational  
learning system. In this work, the system ATRE 
(http://www.di.uniba.it/~malerba/software/atre) has been 
used (Malerba, Esposito & Lisi, 1998). It solves the 
following learning problem: 

Given 
�� a set of concepts C1, C2, �, Cr to be learned, 
�� a set of observations O described in a language LO, 
�� a background knowledge BK expressed in a language 

LBK, 
�� a language of hypotheses LH, 
�� a generalization model � over the space of hypotheses,  
�� a user’s preference criterion PC, 
Find 
a (possibly recursive) logical theory T for the concepts C1, 
C2, �, Cr, such that T is complete and consistent with 
respect to O and satisfies the preference criterion PC. 

The completeness property holds when the theory T 
explains all observations in O of the r concepts Ci, while 
the consistency property holds when the theory T explains 
no counter-example in O of any concept Ci. The 
satisfaction of these properties guarantees the correctness 
of the induced theory with respect to O. 

The preservation of the consistency property explains 
why it is important not to generate clashing examples, by 
computing minimal sequences of operations, as observed 
in the previous section. 

In ATRE, observations are represented by means of 
ground multiple-head clauses, called objects. All literals 
in the head of the clause are called examples of the 
concepts C1, C2, �, Cr. They can be considered either 
positive or negative according to the learning goal. In this 
application domain, the set of concepts to be learned is 
split(X)=horizontal, split(X)=vertical, group(X,Y)=true 
and no background knowledge is available.  

The generalization model provides the basis for 
organizing the search space, since it establishes when a 
hypothesis explains a positive/negative example and when 
a hypothesis is more general/specific than another. The 
generalization model adopted by ATRE, called 
generalized implication, is explained in (Esposito, 
Malerba & Lisi, 2000).  

The preference criterion PC is a set of conditions used to 
discard/favour some solutions while searching for a 
consistent hypothesis. In this work short rules, which 
explain a high number of positive examples and a low 
number of negative examples, are preferred. 

It is noteworthy that the learning strategy implemented in 
ATRE is not affected by imbalanced data, since the goal 
is not to maximize the accuracy (Provost, 2000) but to 
generate consistent theories. As explained in the next 
section, this is an important aspect of our application. 
Other systems that suffer from this problem, such as Tilde 

(Blockeel & De Raedt, 1998), proved unsuitable, since 
they generated only a trivial classifier covering all 
positive and negative examples when tested on this 
learning task.  

5.  Experimental results 

To investigate the applicability of the proposed solution 
we considered twenty-four papers, published as either 
regular or short, in the IEEE Transactions on Pattern 
Analysis and Machine Intelligence, in the January and 
February issues of 1996. Each paper is a multi-page 
document; therefore, we processed 210 document images 
in all. For 148 document images the user performed some 
corrections. The average number of corrections is 2.47 
(i.e. 366/148) per corrected page. In fact, some 
intermediate pages of multi-page documents are the most 
critical and may require several operations to correct the 
column/section structure. The number of objects for 
ATRE corresponds to the total number of nodes in the 
state graph of all pages, namely 210 leaves (one for each 
corrected page layout) and 514 internal nodes. The total 
number of examples is 36,549, which corresponds to the 
total number of literals in the multiple-head clauses. 
Given the set of concepts to be learned, only 736 out of 
36,549 examples are positive and correspond to either 
corrective actions actually performed by the user 
(vertical/horizontal splitting or grouping) or corrective 
actions generated automatically by the system, thanks to 
its independence property. Negative examples are 
implicitly created from what the user did not do.  

The performance of the learning task is evaluated by 
means of a 6-fold cross-validation, that is, the set of 
twenty-four documents is first divided into six blocks (or 
folds) of four documents (Table 1), and then, for every 
block, ATRE is trained on the remaining blocks and 
tested on the hold-out block. For each learning problem, 
the number of omission/commission errors is recorded. 
Omission errors occur when corrective actions on the 
page layout are missed, while commission errors occur 
when wrong actions are “recommended” by a rule. 

Experimental results are reported in Table 2 for each trial, 
and the average number of omission and commission 
errors is also given. Two conclusions can be drawn from 
Table 2. Firstly, there is a high level of variability among 
the trials. For instance, the percentage of omission errors 
of the rule for grouping in the second trial is relatively 
low (about 10.8%), while the same percentage for the 
third trial is quite high (about 73.5%). A possible 
explanation might be the heterogeneous correction 
procedures adopted by the different users who worked on 
the correction of the document layouts. Secondly, the 
percentage of commission errors is very low with respect 
to the percentage of omission errors. This means that 
learned rules are generally specific, because of the low 
percentage of positive examples (about 2%), with respect 
to the total number of training examples. 



 

 

Table 1. Distribution of pages and examples per document 
grouped by six folds. 

 Name of the 
multi-page 
document 

No. of 
pages 

No. of 
 literals 

No. of 
horizonta

l splits 

No. of  
vertical 
splits 

No. 
of 

grou
ps 

Total 
number 

of 
exampl

es 
TPAMI4 14 3534 7 6 0 689 

TPAMI10 3 1960 0 4 0 393 

TPAMI12 6 4710 6 3 3 979 

TPAMI24 6 6003 4 2 6 1248 

Fold 
No. 1 

Total 29 16207 17 15 9 3309 

TPAMI7 6 4790 4 1 16 855 

TPAMI13 3 1601 0 0 2 309 

TPAMI18 6 9638 2 13 10 1930 

TPAMI23 7 4884 1 1 9 897 

Fold 
No. 2 

Total 22 20913 7 15 37 3991 

TPAMI2 8 8053 6 12 15 1453 

TPAMI8 5 6242 5 13 4 1261 

TPAMI11 6 1480 1 1 1 271 

TPAMI14 10 9163 5 4 14 1666 

Fold 
No. 3 

Total 29 24938 17 30 34 4651 

TPAMI3 15 4626 10 7 5 831 

TPAMI16 9 9814 2 14 50 1762 

TPAMI19 20 24638 3 18 45 4641 

TPAMI20 14 22556 2 20 42 4219 

Fold 
No. 4 

Total 58 61634 17 59 142 11453 

TPAMI1 14 13053 16 8 28 2473 

TPAMI6 3 1475 12 7 0 223 

TPAMI17 13 11710 81 14 0 1931 

TPAMI22 5 3242 8 1 3 589 

Fold 
No. 5 

Total 35 29480 117 30 31 5216 

TPAMI5 6 5604 18 2 5 979 

TPAMI9 5 2220 1 3 3 403 

TPAMI15 15 31369 8 45 63 5642 

TPAMI21 11 4680 4 1 5 905 

Fold 
No. 6 

Total  37 43873 31 51 76 7929 

Total 24 docs 210 197045 206 200 329 36549 

 

Table 2. Experimental results. 

Vertical splitting Horizontal splitting Grouping 
Trial 

omiss. comm. omiss. comm. omiss. comm. 
1 8/15 7/3294 10/17 11/3292 4/9 8/3300 
2 11/15 23/3976 4/7 7/3984 4/37 21/3954 
3 22/30 6/4621 12/17 4/4634 20/34 55/4617 
4 33/59 32/11394 6/17 66/11436 94/142 89/11311 
5 17/30 24/5186 96/117 33/5099 14/31 23/5185 
6 28/51 9/7878 26/31 2/7898 18/77 77/7852 

Average% 61.25 0.30 64.63 0.31 41.47 0.70 
St.dev.% 9.43 0.19 18.22 0.26 20.99 0.36 
 

Table 3. Experimental results. Complexity of the learned theory.  

Vertical Splitting Horizontal  Splitting Grouping 
Trial 

No of 
clauses 

Positive 
examples 

No of 
clauses 

Positive 
examples 

No of 
clauses 

Positive 
exampl

es 
1 25 185 29 189 40 320 
2 29 185 34 199 31 292 
3 28 170 26 189 37 295 
4 26 141 31 189 26 187 
5 26 170 22 89 46 298 
6 23 149 26 175 33 253 

Avg. No 
of clauses 

per 
example 

6.38 6.09 7.79 

 

Some statistics concerning the learned theories are 
reported in Table3. It is noteworthy that the average 
number of examples covered by a rule is between 6 and 8 
for all three concepts. However, the variance is high. 
Some rules actually cover about 20-30% of training 
examples, while other cover only one example. 
Specificity of learned clauses is due to two factors: firstly, 
the limited number of positive examples used in the 
training set, and secondly, the fact that ATRE is asked to 
generate a complete theory, that is a set of clauses that 
explain all positive examples.  

For the sake of completeness, some clauses for the three 
concepts are reported below:  

1. split(X1)=vertical � 
width_s(X1)�[289.0..535.0], 
s_on_top_s(X2,X1)=true, 

per_text_s(X2)�[75.0..88.0]. 
2. split(X1)=horizontal � 

height_c(X1)�[872.0..876.0], 
width_c(X1)�[536.0..546.0], 
x_pos_centre_c(X1)�[275.0..314.0]. 

3. group(X2,X1)=true � 
c_to_right_c(X2,X1)=true, 

width_c(X2)�[1.0..11.0], 
height_c(X2)�[40.0..75.0]. 

The interpretation of these clauses is straightforward. For 
instance, the first clause states that «sections with width 
between 289 and 535 pixels that are under another section 
with a percentage of text between 75% and 88% should 
be vertically split». This rule captures the fact that a 
section spans over two columns (it is quite large, indeed) 
in documents that are organized in two columns. The 
geometrical relation with another section whose content is 
mostly text excludes the situation in which figures 
spanning over two columns are also present in the training 
documents.  The second clause states that high and large 
columns, centered with respect to the page, should be 
horizontally split to separate the running head from the 
body of the paper. It is noteworthy that the first and third 
clauses involve some relations and could be generated 
only by relational learning systems such as ATRE.  



 

 

6.  Discussion  

Experimental results prove the difficulty of this learning 
task, which is characterized by a relatively low percentage 
of positive training examples for sometimes-complex 
correction tasks. Learned theories also show that for this 
task it is important to consider the spatial relations 
existing between columns and sections. Such spatial 
relations can be properly modelled in a first-order logic 
formalism, which requires the application of ILP or 
relational learning systems. However, the training set is 
very imbalanced and this prevents the applicability of 
some learning algorithms that optimize the predictive 
accuracy, since they return trivial “no-action” rules, 
which are actually more than 98% correct.  
A further difficulty lies in the complexity of the 
descriptions generated for each multi-page document. 
This poses efficiency problems for the learning system, 
which must be able to handle both numeric and symbolic 
relational data.  
Low performances may also be due to our attempt to learn 
pre-conditions of corrective actions, which are actually 
expressed as classification rules. However, corrective 
actions modify the state of the world, that is, the layout 
structure, while no state change is modelled by 
classification rules. Predicting the result of an action (how 
the state of the world changes) might be equally 
important.2 However, this means that we have to learn 
both pre- and post-conditions of a corrective action.  
Our problem shares some similarities with that faced by 
Lorenzo and Otero (2001), who also investigated issues 
related to learning action selection rules in Situation 
Calculus. More precisely, their problem was to learn the 
predicates select(a, p, s) and reject(a, p, s), where p is a 
plan and a is an action (in our case, horizontal/vertical 
split or group), executed in any situation s�p. The 
background knowledge includes holds/2 ground facts for 
fluents at every initial situation and every goal situation, 
the action theory of the domain in the form of a Situation 
Calculus program together with two universal frame 
axioms which describes how the world stays the same 
(they are necessary to solve the well-known “frame 
problem”). The main difference with our study is that the 
goal is unknown when WISDOM++ applies rules to 
automatically correct the layout tree. Therefore, no plan p 
can be considered to define the action selection rules, and 
no planning algorithm can be used to generate a plan of 
action. Other two methodological differences are: 

�� Reject rules, that is, conditions under which an 
operation must not be performed, are not learned. 

————— 
2 This seems to be especially important for the splitting operations, 
whose result cannot be exactly determined by considering only at the 
layout tree. Indeed, WISDOM++ determines the cut point of a 
horizontal/vertical split by computing the horizontal/vertical histogram 
on the basic blocks returned by the segmentation algorithm. This 
information used to determine cut points is external to the layout tree. 

�� The objects of the world (in our case columns 
and sections) should dynamically change, since 
they should be added or removed as the result of 
the execution of an action. For example, if the 
user horizontally splits a layout tree block T1, the 
resulting layout tree O(T1) has two new blocks, 
instead of the split one. 

Currently, learned rules are operatively used in a 
production system with a forward chaining control 
structure. It is implemented with a theorem prover, using 
resolution to do forward chaining over a full first-order 
knowledge base. The system maintains a knowledge base 
(the working memory) of ground literals describing the 
layout tree. Ground literals are automatically generated by 
WISDOM++ after the execution of an operation. In each 
cycle, the system computes the subset of rules, whose 
condition part is satisfied by the current contents of the 
working memory (match phase). Conflicts are solved by 
selecting the first rule in the subset. Alternative strategies 
have not been tried, such as recency (prefer rules that 
refer to recently created working memory elements), or 
operation priority (which prefers splitting to grouping or 
viceversa). This is a limitation of our work and it 
underlines the more general problem of how to evaluate 
performance of the learned logical theory. Another aspect 
not investigated in this work concerns the non-termination 
of the match-act cycle of the production system. We never 
observed this problem in our experiments, but it is 
theoretically possible that two subsequent operations 
annul each other, thus causing non termination. A simple 
way to overcome this problem is to associate a step to 
each operation. In this case, the splitting operations are 
represented by a binary function, split(X,S), where X 
represents the column/section to be split and S is an 
ordinal number representing the correction process step. 
Clauses learned by ATRE are range-restricted, therefore 
the body of the clause will be forced to contain a literal of 
the form  

step(S)�[a..b], 
which specifies the interval of correction steps in which 
the action can be performed. Every time WISDOM++ 
updates the working memory, a new ground literal 
step(s)=k should be added to. Finiteness of the intervals 
prevents the production system from having non-
termination problems. 
As a future work, we intend to investigate the possibility 
of formulating the problem as goal-based. Indeed, the 
performance of the complete layout analysis process (both 
global and local) can be evaluated on the basis of the 
number of layout components that can be associated with 
a logical label, which is an interpretation of its content 
(document understanding) (Malerba et al., 2001). This 
means that the better the result of the document 
understanding process, the better the result of the layout 
analysis process. Assuming that the user corrected the 
result of the global analysis to separate/group layout 
components with a different/the same logical label, we 



 

 

can define our abstract goal as maximizing the number of 
“splittable” layout components with univocally 
determined logical labels and minimizing the number of 
“groupable” layout components with the same label. In 
this case, a planner rather than a production system is 
required in the recognition phase. It would interface both 
the layout analysis module and the document understand 
module, which both use logic theories induced from a set 
of training examples.  
Another open problem is related to dealing with different 
document classes, each of which has a different page 
layout structure. In this case, different classes may require 
different layout corrections. Therefore, the document 
class should be part of the preconditions of corrective 
actions. However, the correct document class can be 
typically recognized only when the layout structure is 
extracted. The formulation of the problem as goal-based 
can help, but the planner should now interface three 
modules (layout analysis, document classification and 
document understanding), thus making the planning 
problem even more difficult to solve and the task of 
learning search control rules much harder than learning 
those reported in the machine learning literature.  
Finally, more extensive experiments will be performed on 
a set of documents made available by three European film 
archives participating to the project Collate.    
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