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Abstract. Numerical induction from data is one of the statistical data analysis tasks, which uses a tabular model, with almost
exclusively numerical features, as data representation formalism. The output representations are different: from functions
to probability distributions, from surface equations to tables of indexes. One approach to extend the classical data analysis
techniques to symbolic objects is the Symbolic Data Analysis: the input and the output of classical techniques are expressed in a
symbolic way, so guaranteeing the comprehensibility of both the observations and the results, while the processing techniques,
although appropriately adapted, maintain the efficiency of the classical statistical inferential models. Also in the field of
Machine Learning several methods have been proposed to extend some inductive approaches from statistical data analysis to
data represented as attribute-value couples. Sometimes these approaches transform ideas and principles coming from numerical
induction to handle propositional calculus descriptions, otherwise they combine different techniques in order to treat numerical-
continuous data and algebraic-symbolic data differently. The aim here is to improve the efficiency and to preserve the expressive
power of the representations during the learning process, and to save the accuracy and flexibility of the numerical techniques
during the recognition phase. This kind of integration is more and more complex when using first-order computational learning
models, which are useful for handling object descriptions in structured domains, when not only the properties of objects but
also the relations between different objects must be considered. The necessity arises from integrating different computational
strategies, different knowledge representations and different processing methods in a naive combination of classifiers or, more
meaningfully, in a real integration within a unique theoretical framework. When building machine learning systems increasing
attention is given to handling symbolic and numerical information inside the same system. In the paper, we face the problem of
handling both numerical and symbolic data in first-order models, distinguishing the phase of model generation from examples,
and the phase of model recognition by means of a flexible probabilistic subsumption test.

1. Introduction

Extracting knowledge from data with the aims of understanding and explaining phenomena and of
decision making is the common goal of statistical Data Analysis and of Machine Learning. Both the
research communities are aware that:

– analyzing complex aggregated data requires the handling of new set-valued variables in order to
extract significant regularities and association rules;

– “understanding” the data requires an interpretation that is generally easier when the results of the
analysis are expressed in a conceptual-symbolic way;
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– processing a very large collection of data requires very efficient methods such as numerical ones.

Numerical and symbolic approaches to empirical learning share the common objectives of producing
predictive knowledge from observations, but do not share the same semantics, thus hindering the possi-
bility of using the different approaches in an integrated way. When the knowledge representation is in a
numerical form the links among the objects must be defined in terms of operators having the semantics
of numbers (less-equal or twice x); when the representation is symbolic, the constraints on and the
relations among the objects must be expressed as predicates, related to the application domain (color=
[white, yellow]), and the semantics is directly expressed as theorems. The well-known consequence of
using meaningful but heavy symbolic representations is the difficulty in handling numerical relations,
loosing efficiency and precision in computation. On the other hand, numerical representation prevents
the creation of chains of logical reasoning which permit explanations.

These considerations suggest integrating the approaches in a single theoretical framework, focusing the
attention on learning classification theories, expressed in logic languages, and at the same time handling
numerical information efficiently.

Extending classical data analysis with new tools of formalization in order to deal with symbolic data
has been the goal of Symbolic Data Analysis since the end of the 1980s [10].

The theory demands an extension of the classical rectangular arrays, whose rows are the feature vectors
characterizing an object or an observation: each element may contain an interval or several values instead
of a single value as usual, and objects are not necessarily defined by the same variables. As a matter of
fact, several techniques which have been developed for exploratory data analysis and multidimensional
classification (factor analysis, clustering, multiple regression, canonical correlation etc.) are able to
handle almost exclusively numerical features. Studies on categorical data analysis [1] are an exception
and mainly concern the analysis of non numerical-categorical dependent/independent variables, paying
little attention to the problem of how to search for good models. The main goal is that of testing whether
a model adequately fits the sample data, while strategies for model generation and selection are only
superficially examined. The problem of defining a generality order of models that organizes the space of
inductive hypotheses has received little attention in classical data analysis. The first attempt to define the
algebraic structure of the model space to construct efficient search strategies is made in Symbolic Data
Analysis, where partially ordered assertion objects are dealt with [1].

Also in the field of Machine Learning several methods have been proposed to extend some inductive
approaches from statistical data analysis to data represented as attribute-value couples. Sometimes these
approaches transform ideas and principles coming from numerical induction to handle propositional
calculus descriptions. Sometimes they combine different techniques in order to deal with numerical-
continuous data and algebraic-symbolic data differently, with the aim of improving the efficiency and of
maintaining the expressive power of representations during the learning process, and saving the accuracy
and flexibility of the numerical techniques during the recognition phase. This kind of integration is more
and more complex when using first-order computational learning models, which are useful for handling
object descriptions in structured domains, when not only the properties of objects, but also relations
between different objects must be considered. The need arises to integrate different computational
strategies, different knowledge representations and different processing methods in a naive combination
of classifiers or, more meaningfully, in a real integration within a single theoretical framework. According
to this multistrategy learning view initially attention was focused on the integration of different reasoning
methods; later different paradigms were integrated, including symbolic, connectionist and genetic ones.
Recently increasing attention has been given to handling symbolic and numerical information inside the
same system in First Order Logic (FOL).
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In this paper, the previous work done by the authors is extended into two dimensions: First, the way
to handle both numerical and symbolic information in a multistrategy view during the learning process
and second, the definition of a flexible matching function for first-order definite clauses which are useful
during the recognition process. As to the inductive inference from numerical and symbolic data, an
information-theoretic specialization operator has been defined: it can specialize a clause by adding
literals of the type

f(x1, . . . , xn) ∈ [a . . . b],

wheref(x1, . . . , xn) is a function taking values in a numeric domain, while[a . . . b] denotes a closed
interval. It is worthwhile observing that the arity of the function may be greater than one, that is, the
operator is applicable to numerical relations likedistance (x, y). This operator has been embedded in two
proprietary first-order learning systems, INDUBI/CSL [19] and ATRE [20], which automatically generate
knowledge in the form of Horn clauses. The problem of using this kind of knowledge for classification
or prediction tasks is mainly in matching new observations, which may be noisy or incomplete, against
rules. It is necessary to extend the canonical matching function in order to measure the similarities
of two descriptions rather then their equality or inclusion, by an approximate subsumption algorithm.
Both systems have been tested on the problem of classifying and understanding images of single-page
documents [16]. The results have demonstrated the importance of handling both numerical and symbolic
descriptions, since the former increase the sensitivity, while the latter increase the stability of the internal
representation of visual objects.

2. Symbolic data analysis

Most statistical methodologies for data analysis were designed for handling almost simple represen-
tations: the unit for statistical analysis is an individual (i.e. a person or an object) described by a
well-defined set of random variables (either qualitative or quantitative), each of which results in just
one single value. Nowadays, data analysts are required to process data that go beyond the classical
framework, as in the case of data concerning more or less homogeneous classes or groups of individuals
instead of single individuals. A typical situation is that of census data, that is, a collection of information
on the size and characteristics of a population, as well as on the number and characteristics of dwelling
units, business enterprises and government agencies. The statistical unit of census is the household:
each household receives a census questionnaire and is asked to answer the questions. Census data are
needed to make decisions on matters of national and local policy concerning education, employment,
transportation and so on. In order to guarantee privacy, aggregated data are made available: typical
aggregations are formed by census tracts (almost 50.000 in US) or by city blocks (almost 7 millions in
US). Another example of a source of aggregated data is offered by data warehouses, that are databases
built to provide information and knowledge needed by decision-makers. Unlike operational decisions,
which are based on individual transactions, management or strategic decisions are made by analyzing
snapshots of performance of the whole corporation. Also in these on-line analytical processing (OLAP)
applications, new data analysis methodologies dealing with aggregated data are required.

Aggregated data describe a group of individuals by set-valued or modal variables [5]. A variableY
defined for all elementsk of a setE is termed set-valued with the domainΩ, if it takes valuesY (k) in
P (Ω) = {U |U ⊆ Ω}, that is, the powerset ofΩ. A single-valued variable is a special case of a set-valued
variable for which|Y (k)| = 1 for eachk. When|Y (k)| =∞ for eachk, thenY is called multi-valued.
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An example of a multi-valued variable available in the census data is race, which aggregates information
of ethnic origin of household members in a given city block. When an order relation< is defined on
Ω, then the value returned by a set-valued variable can be expressed by an interval [α, β], with some
α, β ∈ Ω, andα < β. In this case,Y is termed aninterval variable. An example of an interval variable
in OLAP application is age, which aggregates information on the age of customers that have bought beer
from a given supermarket each week-end. In the last example it is clear that when only two customers buy
beer, the former aged eighteen and the latter aged eighty, the data aggregation returns an interval [18,80]
for a given week-endk. There is a clear loss of information that can be partially recovered by associating
a distribution function with the interval. More generally, amodal variable is a set-valued variable with a
measure or a (frequency-, probability- or weight-) distributionπk associated toY (k).

A class of individuals described by a number of set-valued or modal variables is termedsymbolic
data. Symbolic data lead to more complex data tables called symbolic data tables, where each cell
does not necessarily contain, as usual, just a single numeric or categorical value, but several values
which can be weighted and also linked by taxonomies. It is important to observe that symbolic data
aggregate data on individuals: henceforth, the term aggregation will be given a different meaning from
the term summarization, which is well represented by two measures typically used in classical statistics,
namely mean and standard deviation. Summarization leads to classical data tables, while aggregation
returns symbolic data tables. The extension of classical data analysis techniques to such tables is termed
Symbolic Data Analysis and has been the goal of both the European Esprit project SODAS 20821 and
the IST-1999-25161 project ASSO, that have produced a formal theory [5] and a software package for
Symbolic Data Analysis. However, these methods have not yet been extended to handle structured
descriptions, that is, to symbolic objects representing not only the properties of objects but also relations
among them.

3. Machine Learning for numeric and symbolic induction

The steady growth of Machine Learning within the area of Artificial Intelligence has introduced
alternative representations and methods for analyzing the data. One major dimension in which to
differentiate machine learning techniques is the complexity of the representation language they adopt.
Most machine learning studies involve propositional attribute-value languages, which are comparable to
tabular representations adopted in statistics, but which differ in the possibility of mixing both numeric
and symbolic data.1

A typical example is represented by decision tree induction methods that work on continuous, nominal,
ordinal and tree-structured attributes [2]. The main weakness of such methods derives from a lack of
expressive power when relations among sub-parts have to be described. Indeed, even in the case of a
fixed number of sub-parts and binary relations, the idea of defining a distinct attribute for each possible
relation between two sub-parts would be realizable only if sub-parts could be totally ordered according to
some criterion. Otherwise, the association of an attribute to pairs of sub-parts would not be deterministic
and hence inexpressible in tabular form.

To overcome these limitations of propositional attribute-value representations, it is necessary to move
to first-order logic (FOL). However, the change of language is not altogether easy, since the intractability

1Henceforth, the term numeric will denote integer and ratio-level measurements, while symbolic data will correspond to
nominal and ordinal level measurements.
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of predicate calculus and the NP-completeness of several decision problems raise new problems that can
only be solved by imposing appropriate restrictions. In other words, a trade-off between expressiveness
and computational tractability is necessary. These aspects have been widely investigated in machine
learning, particularly by researchers working in the field of inductive logic programming (ILP) [20].
A great deal of research in the field of ILP concerns generalization models and the corresponding
generalization/specialization operators. However, only recently studies have been performed on the
problem of inductive inference from both numerical and symbolic data, although no studies have faced
the problem of dealing with rules that near-miss the correct entailment of positive examples.

A first attempt to deal with continuous-valued attributes in FOL was made by Bergadano and Bisio [4],
who proposed a method for automatically setting some parameters of predicate “schemes” with parametric
semantics. A similar idea was proposed in ML-Smart [6] where a two-step approach is implemented.
First a tentative numerical parameter is learned and then a standard genetic algorithm is applied to
refine the numerical knowledge. Esposito et al. [14] proposed a different approach to the problem of
handling both numerical and symbolic data. It was based on the integration of statistical data analysis
with symbolic concept learning methods. More precisely, the authors combined a discriminant analysis
technique for linear classification with a first-order learning method, so that the numerical information
was handled by linear classifiers, while the symbolic attributes and relations were used by the first-order
learning system.

One limit of all these approaches is that they have been defined for clauses with nullary predicates in
the head, that is, with predicates corresponding to propositional classes. This means that such rules can
be used to predict the membership class of an observation as a whole, but they cannot entail properties
of sub-parts of an observation. For instance, the following clause:

House← red(x), ontop(x, y), triangle(x), block(y).

can be used to classify houses with a red triangular sub-part on top of a square, but cannot be applied
to the problem of understanding which part of the house is the roof. In the latter case, non-nullary
predicates are necessary in the head of a clause, as in the following definite clause:

roof(x)← red(x), ontop(x, y), triangle(x), square(y).

The two-phased approach implemented in ML-Smart has been upgraded to full, first-order definite
clauses in the systems FONN [7] and NTR [8], where either neural networks or a gradient descent were
used to refine numerical constants occurring in FOL classification theories.

In the framework of Inductive Logic Programming (ILP), a number of methods have been devised
to solve the problem: transformation of relational problems into equivalent propositional ones as in
LINUS [18], use of a priori knowledge either in a procedural form as in FOIL [25] or in a declarative
form as in Progol [22].

The first class of methods includes the work by Dzeroski et al. [12] who propose the transformation of
first-order representations into propositional form, in order to handle real numbers by means of techniques
already tested in decision tree induction systems. This method can be applied only when all variables
appearing in the body of a clause also appear in the head. Different methods of propositionalization have
been implemented in REPART [30] and in ICP [28]. In the former case the propositionalization pattern is
provided by the user, while in the latter case it is built from the training set. More recently, a lazy propo-
sitionalization method has been proposed for the system PROPAL, which selectively propositionalizes
the FOL training set by interleaving attribute value reformulation and algebraic resolution [3].
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The main representative of the second class of methods is FOIL 6.0 [26], which automatically produces
comparative literals of typeVi > k, Vi � k, Vi > Vj , Vi � Vj , whereVj are numerical variables already
present in other non-comparative literals andk is a numerical threshold. The semantics of the built-
in relational predicates, as well as the heuristics for the selection of the best thresholdk, are defined
procedurally and embedded in the code of the system.

On the contrary, Progol [22] is the representative of the third class of methods, where the capability
of numerical reasoning is explicitly “coded” in a declarative form as background knowledge. More
recently, two implementation extensions of Progol have been proposed in order to make possible the use
of any statistical and numerical analysis procedures [29]. This approach is quite general and allows an
ILP program to exploit more fully the power afforded by the theoretical framework of ILP.

Our approach to the problem of learning “numerical” knowledge concerns the on-line discretization
of numerical attributes and relations. It is characterized by the following features:

1. On-line discretization of numerical attributes and relations should be performed by a specialization
operator, since the learning algorithms in which the operator is used, that is INDUBI/CSL and
ATRE, perform a general-to-specific (or top-down) search.

2. The operator should always guarantee that the seed example that guides the induction process in
both systems will be covered.

3. The heuristic function used to choose among different discretizations should satisfy some property
that reduces the computational complexity of the operator.

This approach falls in the second class presented above, since it is quite a basic mechanism that allows
ILP systems to work efficiently on numerical data. This is not in contrast with the definition in the
background knowledge of domain-specific procedures for statistical and numerical analysis, as made by
Progol.

Once a classification logic theory has been learned some rules may “near-miss” the correct entailment
of observations. The problem becomes particularly relevant when numerical descriptions are involved.
Indeed, a comparative literal of the typeVi > k is falsified for any value slightly smaller than or equal
to k. Therefore, a classical subsumption test should be replaced by an approximate subsumption test.
Little attention has been paid to this research issue in inductive learning of FOL theories. Esposito et
al. [13] proposed a solution to the problems raised by noise during the classification phase, based on a
probabilistic interpretation of the matching predicate. The result of the matching process is no longer a
true/false answer, but a probability that two well-formed formulae of a variable-valued logic matched,
because of a change in one of them. However, one limitation of the proposed flexible matching process
is that it has been defined for rules with nullary predicates in the head. An extension of this work will be
presented in Section 5.

4. Model generation: Induction of first-order models

Models considered in this paper are defined by means of a first-order logic language, whose basic
component is the literal or selector, which has two distinct forms:

f(t1, . . . , tn) = Value(simple literal) and f(t1, . . . , tn) ∈ Range(set literal),

wheref is ann-ary function symbol, calleddescriptor, t i’s can be either variable or constant terms, and
Range is a set of possible values taken byf . Some examples of literals are the following: color(x 1)
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= red, height(x2) ∈ [1.1 . . . 2.1], and ontop(x1, x2) = true. Literals can be combined to formdefinite
clauses, which can be written as:

L0 ← L1, L2, . . . , Lm,

where the simple literalL0 is calledhead of the clause, while the conjunction of simple or set literals
L1, L2, . . . , Lm is namedbody. A clause with literalf(t1, . . . , tn) = Value in the head defines conditions
that should be satisfied by the argumentst1, . . . , tn, so that the functionf can take the value Value when
applied tot1, . . . , tn. For instance, the clause

identifier(x) = roof← color(x) = red, ontop(x, y) = true,

shape(x) = triangle, shape(y) = square

defines the conditions that should be satisfied byx, so thatidentifier can take the valueroof when applied
to x. A function definition is a set of clauses that definef for all possible values in its domain. A
value definition is a set of clauses that define the conditions that should hold for the arguments off ,
so thatf can take a certain value in its domain. Models considered in this paper are value definitions.
Henceforth, we will concentrate our attention on value definitions of functions taking values in finite
unordered domains.

Some particular definite clauses are obtained by imposing different constraints:

– linkedness: conditions in the body should be directly or indirectly related to the arguments of the
functionf defined by the clause;

– range-restrictedness: all arguments of the functionf defined by the clause must be constrained by
at least a condition in the body of the clause.

The clause reported above is both linked and range-restricted, while the following clause

f(x, y) = a← g(y) = b, h(z) = c

is neither linked (conditionh(z) = c is not related to eitherx or y) nor range-restricted (we have no
condition forx).

The first-order models generated by the learning systems INDUBI/CSL [19] and ATRE [20] are
expressed as sets of linked, range-restricted definite clauses. These models are induced from a set
of training (positive and negative) examples for a given function value, each of which is described as
a single ground, linked and range-restricted definite clause. The generation proceeds according to a
separate-and-conquer search strategy.2 The separate stage is a loop that checks for the completeness of
the current model, that is checks that all examples are explained (orcovered) by the generated model.
If this check fails, another clause to be added to the partial model is searched for. The new clause has
to cover some of those examples still unexplained by the partial model. For instance, if we have the
following positive examples for the valuea for the functionf :

e1 : f(x, y) = a← g(x) = b, h(y) = c, r(x, z) = d, g(z) = b

e2 : f(u, v) = a← g(u) = b, g(v) = b

2Actually, ATRE implements a parallel separate-and-conquer search strategy to learn multiple dependent value definitions.
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and first-order model3

H : f(X,Y ) = a← g(X) = b, h(Y ) = c

then it is easy to see thatH explainse1 and note2, thus we have to complete it by adding a further
clause that covers at leaste2. In the separate stage both learning systems search in the space of all value
definitions for a complete model.

The separate-and-conquer search strategy is adopted in other well-known learning systems, such as
FOIL [25]. The main difference with our systems is the use of aseed example, whose function is that of
guiding the learning process. Since each positive example should be covered by at least one clause of
the model returned by the procedure separate-and-conquer, each example becomes a valuable source of
information on the structure of the covering clause. Indeed, ife+ is a positive example to be explained
by an induced modelH, thenH should contain at least one clauseC that coverse+. Therefore, the
systems start with a seed examplee+ and generate a set of at leastM distinct range-restricted clauses,
which are consistent and covere+. Then, the best generalization is selected from such a set according to
a preference criterion. Finally, positive examples covered by the best generalization are removed from
the set of positive examples and a new clause is generated, if the set of remaining positive examples is
not empty.

In the conquer stage, both learning systems perform a beam-search in the space of definite clauses,
looking for a linked, range-restricted definite clause that explains some positive examples but no negative
example (consistency property). The search starts with the most general clause:

f(t1, . . . , tn) = Value←
and proceeds from general-to-specific, or top-down, by adding literals to the body until the obtained
clause becomes consistent. In order to specialize a clauseG, the systems have to choose some literals
to be added. Both numerical and symbolic data are handled in exactly the same way, that is, they have
to comply with the property of linkedness and should be sorted according to the very same preference
criterion. The only difference is that numeric literals already present in the generalization can be
reconsidered, in order to specialize the interval. It is worthwhile to observe that all selected literals are
generalizations of literals in the seed examplee+, obtained by applying a simple inverse substitution [27]
that replaces all occurrences of a termti by the same variableXi. Thus, the seed example provides the
learner with useful information on the structure of the generalizations. The computation of the interval
for numerical set literals is described in Fig. 1.

A table associated to the functionf(X1,X2, . . . ,Xn) is built by matching the specialized clause

G, f(X1,X2, . . . ,Xn) ∈ [−∞ . . .+∞]

against positive and negative examples. Then an information-theoretic heuristic is used to select the best
interval of values. The table, initially empty, contains pairs <Value, Class>, whereClass can be either
+ or− according to the sign of the examplee from whichValue is taken. TheValue is determined by
considering the literal of the examplee that matched againstf(X1,X2, . . . ,Xn) ∈ [−∞ . . .+∞].

Now the problem is that of finding the interval that best discriminates positive from negative examples.
Any threshold valueα, lying between two consecutive distinct values, will have the effect of producing

3Henceforth, we will follow the usual Prolog convention of starting variables with a capital letter, all other atoms being
constants.
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Fig. 1. Choice of the best range of numerical descriptors.

two disjoint intervals: the left interval[l1, l2] and the right interval[r1, r2]. The lower bound of the left
interval is the smallest value in the table with sign+, while the upper bound in the same interval is
the largest value in the table that does not exceed the thresholdα. On the contrary, the lower bound of
the right interval is the smallest value in the table that exceedsα, while the upper bound is the largest
value with sign+. When one of the two intervals contains no positive value, then it is set toundefined.
However, at least one of the two intervals must be defined, since the table contains at least one value+
corresponding to theSeed value, that is the value taken byf(X1,X2, . . . ,Xn) in the seed example.

Not all definite intervals have to be considered, since the specialized clauseG, f(X 1,X2, . . . ,Xn)
∈ Range for a givenRange might no longer cover the seed examplee+. Those definite intervals
that include theSeed value are said to beadmissible, because they guarantee that the corresponding
specializations still cover the seed examplee+. When the condition of admissibility holds for an
interval, the weighted entropy is computed and compared to the minimum weighted entropy found up to
that moment.

By looking at the table as a source of messages labelled+ and−, then the expected information on
the class membership conveyed from a randomly selected message is:

info(n+, n−) = − n+

n+ + n−
log2

n+

n+ + n−
− n−

n+ + n−
log2

n−

n+ + n−

wheren+ andn− are the number of values in the table with positive and negative signs, respectively.
Now consider a similar measurement afterT [f(X1,X2, . . . ,Xn)]has been partitioned into two subsets,

S1 andS2, the former containingn+
1 +n−1 values falling within an admissible interval, the latter containing
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the remaining values. The information provided byS1 will be close to zero when almost all cases have
the same sign,+ or−. However, we are interested in intervals with a low entropy but a high number of
positive examples. The following weighted entropy:

E(n+
1 , n

−
1 ) =

n−1
n+

1

info(n+
1 , n

−
1 )

does actually penalize those admissible intervals with a low percentage of positive examples. A good
rule of thumb would be to choose the admissible interval that minimizesE(n+

1 , n
−
1 ). As a concrete

illustration, let us reconsider the table reported below

Value 0.5 0.7 0.9 1.0 1.5 1.5 1.5 1.7 2.5 2.5
Sign + − − − − − + + − +

There are four possible cut points that generate the following intervals:

α 0.60 1.25 1.60 2.10
[l1, l2] [0.50 . . . 0.50] [0.50. . . 1.00] [0.50. . . 1.50] [0.50. . . 1.70]
[r1, r2] [0.70 . . . 2.50] [1.50. . . 2.50] [1.70. . . 2.50] [2.50. . . 2.50]

Let us suppose thatSeed value equals 1.50. Then only those intervals including 1.50 are admissible,
since they allow the specialized clause to cover the seed example. The weighted entropy for each of
them is given in the table below.

Adm. interval [0.70. . . 2.50] [1.50. . . 2.50] [0.50. . . 1.50] [0.50. . . 1.70]
E 1.836592 1.000000 2.157801 1.590723

Thus, the best interval is the second one, with a weighted entropy equal to 1.0.
When the table is huge, there could be numerous cut-points. Only some of them will actually

be considered, namely those between two consecutive distinct values with different signs (boundary
points). This explains why the cut points 0.80 and 0.95 have not been considered. On the contrary, the
cut-point 1.25 has been considered because the value 1.0 has a negative sign, while there is a value 1.5
with a positive sign. The reason for this choice is due to the following:

Theorem 1(Best cut-point) If a cut-pointα minimizes the measure, thenα is a boundary point.
A proof of this theorem is reported in [16]. This result helps to discard several computations of the

weighted entropy by considering only boundary points, so improving the efficiency of the procedure
determine range.

5. Model application: Recognition by probabilistic subsumption

Models induced by the system can be used to predict function values for new observations. More
precisely, each clause

C : f(X1, . . . ,Xn) = Value← L1, L2, . . . , Lm

of an induced model can be used forward as an inference rule: If conditions in the body are satisfied
by the new observation, according to a grounding substitutionθ, we can conclude that the functionf
takes the valueValue when applied toX1θ, . . . ,Xnθ. It is worthwhile observing thatX1θ, . . . ,Xnθ
are ground terms, since the property of range-restrictedness guarantees that when conditions in the
body of a clause are satisfied, then the arguments off are completely determined. For instance,
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the body of the clausef(X,Y ) = a ← g(X) = b, h(Y ) = c is satisfied by the observed facts
g(x) = b, h(y) = c, r(x, z) = d, g(z) = b, according to the substitutionθ = {X ← x, Y ← y}
that grounds all literals in the clause. Thus, we can conclude thatf takes the valuea when applied
to x andy.

The matching procedure adopted in this deductive step requires that all conditions in the body of a
clause are satisfied by the observed facts, or, more technically, that the body of the clauseθ-subsumes4

the set of observed facts [24].

Definition 1 (θ-subsumption). Let C and D be two clauses.5 Then C θ-subsumes D, denoted as
C � θD, if and only if there exists a substitution θ such that Cθ ⊆ D.

The result of aθ-subsumption test is either true or false. IfC denotes the space of clauses, then

θ-subsumption:C × C → {false, true}
However, this requirement might be too strict for real-world problems, because of their inherent

vagueness. The presence of noise or the imprecision of the measuring instruments or the variability
of the phenomenon described by the induced model often cause the subsumption test to fail. For this
reason it becomes necessary to rely on a more flexible definition of subsumption that aims at comparing
two descriptions in order to identify their similarities rather than their equality. The result of a flexible
subsumption should produce a number in the unit interval [0,1] that indicates a degree of similarity
between two clauses:

flexible-subsumption:C × C → [0, 1]

such that, for any two clausesC andD,

i) flexible-subsumption(C,D) = 1 if C θ-subsumesD,
ii) flexible-subsumption(C,D) ∈ [0, 1) otherwise.

The definition of such a similarity measure should be based on a theory which is able to reason about
chance and uncertainty, such as the probability theory. A fuzzy-logic approach would also be possible,
although we are not aware of fuzzy pattern matching algorithms working on structural or relational
representations like those dealt with in this paper.

In the probabilistic approach we can interpret the result of the flexible-subsumption function as the
probability ofC θ-subsumingD, provided that a change is made inD. More precisely, letD ′ be a
ground clause obtained fromD by means of some syntactic changes, such thatC θ-subsumesD ′. We
can associate a probability toD ′, P (D|D′), representing the likelihood of observingD, given that the
original observation wasD′. Then, we can set

flexible-subsumption(C,D) = max
def D′θ-subsumed byC

P (D|D′)

4The canonical definition ofθ-subsumption given by Plotkin [24] is appropriate for simple literals. However, it can be
straightforwardly extended to set literals by requiring that the range of values of literals inC is a subset of the range of values
of the corresponding literals inD.

5A clauseC = L1 ∨ L2 ∨ . . . Lm is also considered as the set of its literals, that is,C = {L1, L2, . . . , Lm}.
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that is,flexible-subsumption(C,D) equals the maximum value of the likelihood computed over the space
of clausesD′θ-subsumed byC.

Therefore, one of the main problems is that of estimatingP (D|D ′) for all clausesD′θ-subsumed by
C. For instance, let us consider the following definite clause:

f(X,Y ) = a← g(X) = b, h(Y ) = c

and the following set of observed facts:

D : g(x) = b, h(y) = d.

Let C denote the body of the definite clause. It can immediately be seen thatC does notθ-subsume
D. On the contrary,

D′ : g(x) = b, h(y) = c

is θ-subsumed byC, so that we can draw the conclusionf(x, y) = a with probability equal toP (D|D ′).
This probability is the likelihood that the original observation wasD ′, but we measuredD because of
noise. Before explaining how to computeP (D|D ′) let us observe that there are many other clauses
D′θ-subsumed byC, therefore we have to search in the (possibly infinite) space of clausesθ-subsumed
by C for that clauseD′ that maximizesP (D|D′). REFLEX, the system that implements a flexible-
subsumption test, performs a branch-and-bound search that expands the least-cost partial path. The cost
function is given by1− P (D|D′).

LetD be the set of literals{L1, L2, . . . , Lm}. Under the assumption that all factsL1, L2, . . . , Lm are
conditionally independent, givenD ′, the probabilityP (D|D′) can be defined as follows:

P (D|D′) =
m∏

i=1

P (Li|D′)

whereP (Li|D′) denotes the probability of observing the ground factLi givenD′. Suppose thatLi is
f(t1, . . . , tn) = Value, then, ifD′ contains the literalf(t1, . . . , tn) = Value′, P (Li|D′) is the probability
that the real value wasValue′, but we observedValue. We relate this probability to the type of domain of
the functionf (unordered, partially ordered, or totally ordered), as well as to the probability distribution
of values in the function domain. When no information is available on the probability distribution of
values, we make an assumption of uniform distribution. Formulae for the computation ofP (L i|D′)
under this assumption are reported in [11, Section V], for several types of domains.

WhenD′ does not contain a literalf(t1, . . . , tn) = Value′ we can say that the information on
f(t1, . . . , tn) is missing or unknown. In this caseP (Li|D′) is computed as the expected value of
P (Li|D′ ∪ {f(t1, . . . , tn) = Value′}), whereValue′ is the generic domain value, that is,

P (Li|D′) =
∑

Value′
P (f(t1, . . . , tn) = Value′) · P (Li|D′ ∪ {f(t1, . . . , tn) = Value′})

Once again, formulae for the computation of the expected value, under the assumption of uniform
distribution are reported in [13, Section VII].

We conclude this section by observing that, under the assumption of uniform distribution, we have
P (D|D′) > 0 for anyD′. This means that any ground instance of the head of a definite clause can be
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Table 1
Experimental results for a set of 30 real business letters

Average number p-value Number of average
of errors wilcoxon signed clauses learning time

Symbolic Mixed ranks test Symbolic Mixed Symbolic Mixed
3.6 2.9 0.3114 28.0 11.5 20:24 19:17

probabilistically entailed, although some instances are more likely than others. If we are interested in
logical entailment with probability at leastp, then the definition ofp-subsumption can be considered.

Definition 2 (p-subsumption). Let C and D be two clauses. Then C p-subsumes D, denoted as
C � pD, if and only if flexible-subsumption(C,D) � p.

In the application presented in the next section, ap-subsumption test to identify the logical components
of some real business letters will be used.

6. Application to document image understanding

In this section the application of this approach to the field of document understanding is presented.
The termdocument image understanding denotes the process of identification of logical components
of a document and the subsequent extraction of relationships between them, such as the reading order
based on spatial information and layout analysis results. Indeed, a document can be understood by
means of its layout structure: this happens when the document has a standard format, as, for instance,
business letters sent by a certain company. In this case, the date, the logo, the receiver of the letter and
other semantically relevant parts can be easily located. Nevertheless, writing down the models useful to
understand a particular type of document can be a demanding task, thus we adopted a different approach:
We learn the models from a set of training documents [15]. In previous experiments we used only
symbolic descriptors by discretizing numeric attributes, such as height, width and position of a block.
Preliminary results were encouraging, but not totally satisfactory. One of the main issues seemed to be
the prior discretization of numeric attributes. Since the current release of the learning systems are able
to handle numerical descriptors as well, we decided to organize an experiment to test the improvement
of the generated rules in terms of accuracy, learning time and simplicity.

In [16] the results obtained by INDUBI/CSL on a set of 112 single-page documents were reported. In
this work, we present results concerning the application of ATRE to a set of 30 single-page documents,
namely copies of business letters sent by a company. The page layout of each document is described with
only symbolic descriptors or mixed numeric/symbolic descriptors (see Fig. 2). The logical components
we are interested in recognizing are logo, sender, receiver, date, reference number, body and (possibly)
signature of the sender.

Experimental results for a 10-fold cross-validation are summarized in Table 1. The significance test
used is a non-parametric test, namely the Wilcoxon signed-ranks test [23], pairing across the folds
for the cross-validations. The table shows that the average number of errors decreases, although not
significantly, when numerical attributes are discretized on-line.

By decomposing the average number of errors into omission and commission errors6 we can conclude

6Omission errors are made when some logical components in the test document are not identified, while commission errors
are made when some layout components are given a wrong logical meaning.



458 F. Esposito et al. / Inductive learning from numerical and symbolic data: An integrated framework

part_of(x1,x2)=true, part_of(x1,x3)=true, ..., part_of(x1,x16)=true,
width(x2)= medium, width(x3)= medium, ..., width(x16)= medium_small,
height(x2)= medium_small, height(x3)= medium_small, ..., height(x16)= smallest,
type(x2)= text, type(x3)= text, ..., type(x16)= text, position(x2)= top_left,
position(x3)= top_left, ..., position(x8)= top_right, ..., position(x16)= bottom_right,
ontop(x2,x3)=true, ontop(x5,x8)=true, ..., ontop(x13,x14)=true,
toright(x6,x7)=true, toright(x3,x4)=true, ..., toright(x9,x10)=true,
aligned(x2,x3)=only_left_col,aligned(x6,x7)=only_lower_row, ...,
aligned(x13,x14)=only_left_col

part_of(x1,x2)=true, ..., part_of(x1,x16)=true,
width(x2)= 120.0, ..., width(x8)= 57.0, ..., width(x16)= 44.0,
height(x2)=  63.0, ..., height(x16)= 5.0,
type(x2)= text, ..., type(x16)= text,
x_pos_centre(x2)= 89.0, ..., x_pos_centre(x8)=478.0, ..., x_pos_centre(x16)=568.0,
y_pos_centre(x2)= 40.0, ..., y_pos_centre(x8)= 263.0, ..., y_pos_centre(x16)= 836.0,
ontop(x2,x3)=true, ..., ontop(x13,x14)=true,
toright(x6,x7)=true, ..., toright(x9,x10)=true,
aligned(x2,x3)=only_left_col, ..., aligned(x13,x14)=only_left_co

l

x1x2

x3
x4 x5

x6
x7

x8

x9
x10 x11

x12

x13

x14
x15

x16

Fig. 2. A business letter and its layout descriptions, symbolic (up) and mixed (down).

that rules generated from numeric/symbolic descriptions made a significantly lower number of commis-
sion errors (0.3 vs. 1.5, p-value= 0.0277), and slightly increased the number of omission errors (2.6 vs.
2.1, p-value= 0.7353). Since, in our application, commission errors are considered more serious than
omission errors, we can conclude that the handling of numerical attributes was actually beneficial. As
to the other parameters, we observe that the introduction of numerical descriptors simplified the models
(see the average number of clauses) and reduced the learning time (expressed in minutes).
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The increase in omission errors is due to the presence of literals of the typef(X1, . . . ,Xn) ∈ [a . . . b],
that often miss the match against an instance, since the value taken byf is either a little higher thanb or a
little lower thana. For instance, in one of the ten trials of the previous experiment, the system produced
the following definition oflogic type for the valuedate:

logic type(X1) = date← width(X1) ∈ [42.0 . . . 97.0], x-pos-centre(X1) ∈ [480.0 . . . 525.0]

logic type(X1) = date← y-pos-centre(X1) ∈ [262.0 . . . 279.0], aligned(X3,X1) = both rows,

aligned(X2,X3) = both rows

logic type(X1) = date← aligned(X3,X1) = only lower row, aligned(X2,X1) = both rows

logic type(X1) = date← x-pos-centre(X1) ∈ [453.0 . . . 525.0],

y-pos-centre(X1) ∈ [266.0 . . . 276.0]

However, none of the bodies of the four clauses aboveθ-subsumes the numeric/symbolic description
of the document in Fig. 2. In fact, the first clause misses the test because the functionx-pos-centre takes
the value 478.0 for the layout componentx8 corresponding to the logical component date, while the
range of possible values is[480.0 . . . 525.0]. On the contrary, the fourth clause misses the test because
the functiony-pos-centre takes the value 263.0 for the argumentx8, while the range of possible values
is [266.0 . . . 276.0].

For this reason, we decided to match the induced models against test cases using a p-subsumption
test instead of the traditionalθ-subsumption. The results obtained with a 0.99-subsumption test are the
following: 0.4% of commission errors and 2.2% of omission errors. Thus, during the recognition phase,
the system has been able to reduce the rate of omission errors to that obtained with symbolic descriptions,
with a small increase of commission errors. Such an increase is mainly due to the proximity of layout
components labeled as reference number (see blockx7 in Fig. 2) to the other layout components without
any logical meaning (see blockx10 in Fig. 2). We can conclude that the threshold of a probabilistic
subsumption test depends on the value of the function to be predicted. In this experiment we have defined
a unique threshold for all p-subsumption tests, but for the future we plan to learn the bestp automatically
from the same training set used to build the models.

7. Conclusions

Handling both numerical and symbolic data is an important issue for the successful application of
first-order learning systems to real world problems. In the paper an operator for the on-line discretization
of a homeric attribute/relation and a flexible matching predicate between definite clauses have been
presented and tested in the field of document understanding. These techniques increase the sensitivity
of the learner, reducing the commission errors without simultaneously increasing omission errors.

For the future, we plan to investigate an extension of current ILP techniques to aggregated data, as
done in symbolic data analysis. The main difficulty met in applying current ILP techniques to aggregated
data is that variables are set-valued or modal. Indeed, in the case of symbolic data, each observation
is actually the description of a class of individuals, while ILP studies follow the traditional assumption
of all machine learning studies, according to which observations are points of a feature space while
discrimination rules define regions that enclose them. This work will give a new perspective to Diday’s
initial work on hordes [10] and might be a distinct step forward both in ILP and in Symbolic Data
Analysis.



460 F. Esposito et al. / Inductive learning from numerical and symbolic data: An integrated framework

Acknowledgments

Thanks to Lynn Rudd for her help in reading the paper.

References

[1] A. Agresti, Categorical Data Analysis, Wiley, New York, NY, 1990.
[2] H. Almuallin, Y. Akiba and S. Kaneda, On handling tree-structured attributes in decision tree learning,Proceedings of

the 12th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA, 1995, pp. 12–20.
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[12] S. Dzeroski, L. Todorovski and T. Urbancic, Handling real numbers in ILP: A step towards better behavioural clones
(extended abstract), in:Machine Learning: ECML95, Lecture Notes in Artificial Intelligence, (Vol. 912), N. Lavrac and
S. Wrobel, eds, Springer, Berlin, 1995, pp. 283–286.

[13] F. Esposito, D. Malerba and G. Semeraro, Classification in noisy environments using a distance measure between
structural symbolic descriptions,IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-14 (3) (1992),
390–402.

[14] F. Esposito, D. Malerba and G. Semeraro, Incorporating statistical techniques into empirical symbolic learning systems,
in: Artificial Intelligence Frontiers in Statistics, D.J. Hand, ed., Chapman & Hall, London, 1993, pp. 168–181.

[15] F. Esposito, D. Malerba and G. Semeraro, Multistrategy Learning for Document Recognition,Applied Artificial Intelli-
gence 8(1) (1994), 33–84.

[16] F. Esposito, D. Malerba and F.A. Lisi, Machine Learning for Intelligent Processing of Printed Documents,Journal of
Intelligent Information Systems 14(2/3) (2000), 175–198.

[17] N. Lavrac, S. Dzeroski and M. Grobelnik, Nonrecursive definitions of relations with LINUS, in:Machine Learning:
EWSL-91, Lecture Notes in Artificial Intelligence, (Vol. 482), Y. Kodratoff, ed., Springer-Verlag, Berlin, 1991, pp. 265–
281.

[18] N. Lavrac and S. Dzeroski,Inductive Logic Programming: techniques and applications, Ellis Horwood, Chicester, UK,
1994.

[19] D. Malerba, G. Semeraro and F. Esposito, A multistrategy approach to learning multiple dependent concepts, in:Statistics
and Machine Learning: The Interface, C. Taylor and R. Nakhaeizadeh, eds, Wiley, London, 1996, pp. 87–106.

[20] D. Malerba, F. Esposito and F.A. Lisi, Learning recursive theories with ATRE, inProc. of ECAI ’98, Brighton, UK, 1998,
pp. 434–439.

[21] S. Muggleton, ed.,Inductive Logic Programming, Academic Press, London, 1992.
[22] S. Muggleton, Inverse Entaiment and Progol,New Generation Computing 13 (1995), 245–286.
[23] M. Orkin and R. Drogin,Vital Statistics, McGraw Hill, New York, NY, 1990.
[24] G.D. Plotkin,Automatic methods of inductive inference, PhD thesis, Edinburgh University, August 1971.
[25] R. Quinlan, Learning logical definitions from relations,Machine Learning 5 (1990), 239–266.



F. Esposito et al. / Inductive learning from numerical and symbolic data: An integrated framework 461

[26] J.R. Quinlan and R.M. Cameron-Jones, FOIL: A midterm report, in:Machine Learning: ECML-93, Lecture Notes in
Artificial Intelligence, (Vol. 667), P.B. Brazdil, ed., Springer-Verlag, Berlin, 1993, pp. 3–20.

[27] C. Rouveirol, Flattening and saturation: Two representation changes for generalization,Machine Learning 14 (1994),
219–232.

[28] M. Sebag and C. Rouveirol, Constraint inductive logic programming, in:Advances in ILP, L. de Raedt, ed., IOS Press,
1996.

[29] A. Srinivasan and R.C. Camacho, Numerical reasoning with an ILP system capable of lazy evaluation and customised
search,Journal of Logic Programming 40 (1999), 185–214.

[30] J.-D. Zucker and J.-G. Ganascia, Learning structurally indeterminate clauses, in:Proc. of the 8th Int. Conference
on Inductive Logic Programming, Lecture Notes in Artificial Intelligence 1446, D. Page, ed., Springer-Verlag, 1998,
pp. 235–244.


