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Abstract. Symbolic data analysis aims at generalizing some standard statistical data mining methods, such as those developed
for classification tasks, to the case of symbolic objects (SOs). These objects synthesize information concerning a group of
individuals of a population, eventually stored in a relational database, and ensure confidentiality of original data. Classifying
SOs is an important task in symbolic data analysis. In this paper a lazy-learning approach that extends a traditional distance
weighted k-Nearest Neighbor classification algorithm to SOs, is presented. The proposed method has been implemented in the
system SO-NN (Symbolic Objects Nearest Neighbor) and evaluated on symbolic datasets.

1. Introduction

National Statistics Institutes (NSls), as well as government departments and local authorities, regularly
collect a large amount of official data through censuses, statistical surveys and administrative records.
Generally, official data are processed by NSIs to produce official statistics, such as inflation rate and
gross national product (GNP), which are used to inform the general public and to support governments in
their functions. More recently, there has been an increasing interest in using official data also to support
the decision-making of either private companies (e.g., by keeping labor/product/capital market analyzers
up to date) or single individuals (e.g., by informing them on specific educational and occupational
choices) [33]. This different use of official data frequently requires more detailed analyses than are
presently published by statistical organizations, as well as specific data mining activities that can reveal
new patterns buried in official datasets. However, the idea of exploring a database with the objective of
finding unexpected patterns is not familiar to official statisticians who have to answer precise questions
and make forecasts. In NSls, statistical analyses are done generally if they can be repeated in a production
framework [40].

Since the main task of NSIs remains official data production, data analysis is often performed by
academic institutions or independent research institutions. This leads to increasing pressure on NSls and
other statistical organizations to provide detailed data (micro-data) on a wide range of topics. However,
there are problems in providing micro-datasets to researchers — the main one being the confidential nature
of the data themselves. Indeed, general Data Protection laws prohibit NSIs from releasing individual
responses of censuses and surveys to any other government agency or to any individual or business.

A solution to confidentiality problems is that of creating datasets for access by researchers through the
aggregation of micro-data. An appropriate choice of the aggregation unit may provide researchers with
datasets still useful for the intended data mining tasks but whose risk of identification of a record or of
disclosure is acceptably small. For instance, UK census data are aggregated by Enumeration Districts
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Table 1
Symbolic data table describing groups of residents per ED (Enumeration District)
ED # Inhabitants ~ Annual income ~ Communal Ethnicity %
(pounds) Establishments (W,B,A,0)
03BS004 555 [1500-25000] {Kindergarten, (60, 15, 15, 10)
Primary School,
Guesthouse }
03BS005 307 [20000-115000]  {College, Hotel, (85,5,5,5)
Hospital }
03BS006 805 [0-12000] {Prison, Hospital } (25, 45, 25, 5)

(ED) before being published. Data aggregated at an ED level do not allow data analysts to identify an
individual or a single business establishment, but are detailed enough to investigate social problems, such
as transportation [30] and accessibility [3].

In classical statistics, aggregation refers to the computation of some descriptive statistics, such as
mode, mean or standard deviation, each of which returns a single (continuous or categorical) value. An
alternative approach that equally prevents the disclosure of confidential micro-data is that of making only
generalizations of groups of individuals available to external agencies and institutes. This approach is
at the base of symbolic data analysis (SDA) [5], which is mainly concerned with the analysis of second-
order objects, that is, generalizations of groups of individuals or classes, rather than single individuals
(first-order objects).

In SDA, generalizations are typically represented by means of set-valued and modal variables [5]. A
variable X defined for all elements of a set F is termed set-valued with domain X if it takes its values
in P(X) = {U|U C X}, that is, the power set of X. When X (k) is finite for each &, then X is called
multi-valued. A single-valued variable is a special case of set-valued variables for which | X (k)| = 1
for each k. When an order relation < is defined on X, then the value returned by a set-valued variable
can be expressed by an interval [«, 3], and X is termed an interval variable. A modal variable X is a
multi-valued variable with weights, such that X (k) describes both multi-valued data U (k) and associated
weights = (k), that is, X (k) = (U(k), w(k)). Notice that single-valued variables can also be considered
special cases of modal variables whose weight equals either to 1 or 0.

Typically, each generalization is represented by a set of m variables X;. Moreover, generalizations
of different groups of individuals from the same population are described by the same set of symbolic
variables. This leads to data tables, named symbolic data tables, more complex than those typically used
in classical statistics. Rows of the table correspond to distinct generalizations (or symbolic descriptions),
while columns of a symbolic data table are called symbolic variables. Each item at the intersection of a
row and a column does not necessarily contain, as usual, just a single continuous or categorical value,
but several values with possibly an associated modality (frequency, probability or weight). An example
of a symbolic data table describing groups of residents per ED (Enumeration District) is given in Table 1.
In this case, the first symbolic variable is single-valued and reports the number of residents. The second
symbolic variable is interval-valued and reports the range of values of annual income of the residents.
The third symbolic variable is multi-valued and lists the communal establishments in the ED. The four
modalities of the fourth symbolic variable refer to the percentages of White (W), Black (B), Asian (A)
and other (O) residents in the ED.

Symbolic data tables can be generated from relational databases storing original micro-data, by
applying both generalization and specialization operators in order to obtain a homogeneous description
of group [41].

The symbolic description corresponding to a row of a symbolic data table describes a class of individ-
uals, which are in turn the partial or complete extent of a given concept. Starting with this description, a
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symbolic object (SO) models the underlying concept and provides a way to find at least the individuals
of this class. Indeed, a symbolic object is formally defined in [5] as a triple s = (a, R, d) where R is a
relation between descriptions (e.g., R € {=, =, <, C} or R is an implication, a kind of matching), d is
a description and « is a mapping defined by a set of individuals €2 in a set L (e.g., L = {true, false} or
L = [0, 1]) such that a depends on R and d.

The main goal of SDA is that of investigating new theoretically sound techniques by generalizing some
standard statistical data mining methods, such as those developed for classification or clustering tasks to
the case of symbolic objects. Such techniques usually concern classes of symbolic objects, where R is
fixed, “d” varies among a finite set of coherent descriptions and “a” is such that: a(w) = [y(w) R d],
which is by definition the result of the comparison of the description of the individual w to d.

Many techniques for both the construction of symbolic objects from records of individuals and the
analysis of symbolic objects have already been implemented in an integrated software environment
SODAS [14].

In this paper, we investigate the classification of symbolic objects by means of a classification method
named SO-NN (Symbolic Objects Nearest Neighbor) that extends the traditional distance weighted k-
Nearest Neighbor (k-NN) classification algorithm to SOs. This work is the first attempt at extending
a lazy learning method to deal with symbolic data tables. Lazy learning methods estimate the target
function locally and differently for each instance to be classified and are considered quite effective when
the target function is complex. Moreover, the main disadvantage of lazy learning, namely computational
complexity, is mitigated by the lower dimensionality of a symbolic data table with respect to the original
set of individuals.

The paper is organized as follows. In the next section we present related work on classification in SDA
and we motivate the importance of a lazy learning approach. The definition of k-NN, and consequently of
its extension to symbolic objects, is based on the notion of dissimilarity. For this reason, in Section 3 we
introduce some dissimilarity measures defined for symbolic objects. The core of the SO-NN method is
described in Section 4. Finally, some experimental results are reported in Section 5 and some conclusions
are drawn.

2. Related work and motivation

The problem of classifying symbolic objects has been approached in many ways. Ciampi et al. [10]
introduced a generalization of binary decision trees [7] to predict the class membership of a SO. Training
observations are described by one or more explanatory symbolic variables X; and one single-valued
symbolic target variable Y. The algorithm is based on a divide-and-conquer strategy starting with a
root node that is associated with the entire set of training symbolic data. At each step, training data is
recursively split until the tree is sufficiently accurate. The best split is chosen according to a splitting rule
that consists in maximizing the Generalized Information Measure (GInf) over the set of candidate splits.
Candidate splits are defined as in the classical case, that is, where each explanatory variable provides a
single binary question (e.g. “age in [0, 18]” versus “age in [18, 130]™). In [9], the authors define fuzzy
splits, which are probabilistic binary questions built on the basis of a logistic transformation.

Bravo [6] has proposed an alternative splitting criterion that maximizes the Extended Information
Content (EIC) when building a Strata Decision Tree, which is a tree-based classifier, from a set of
individuals E partitioned into several strata. Each stratum corresponds to a SO since it is described
by symbolic variables (categorical single-valued or modal, but not interval), which can be related by
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hierarchical dependencies. EIC measure of a candidate split properly estimates internal entropy over
strata E with respect to both the left and right child of the split node.

The splitting criterion adopted for the construction of a Structural Bayesian Decision Tree (SB-
TREE) [37] minimizes the misclassification error when both the left and right child are labeled with
the bayesian classification rule computed according to kernel density estimation. Similarly to the other
tree-based classifiers for SOs, the result is a single class. However, the SBTREE induction method has
been designed to deal only with interval symbolic variables.

Rossi and Conan-Guez [38] have generalized Multi-Layered Perceptrons [32] to work with interval-
valued data. The output is an [-dimensional vector (y1, ..., y;) of modalities, where [ is the number
of distinct classes. The single-class output can be obtained by returning the class c; such that y; =
max(y1,...,y;). Despite the robustness and flexibility of Multi-Layered Perceptrons, they appear
clearly inadequate in problems where interpretability is a key factor, due to the difficulty of users in
interpreting their predictions.

Finally, Lauro et al. [25] have proposed an extension of the Factorial Discriminant Analysis (FDA)
to SOs. In FDA the original variables are linearly combined into a new set of features that describe the
observations, and the classification is based on the computation of the proximity of the observation to
the separating hyperplane. The extension of FDA to SOs is based on an initial conversion of SOs into
observations described by a set of continuous explanatory variables, the application of standard FDA to
such observations, and the final conversion of geometrical classification rules into SOs.

All these works refer to classification methods that eagerly learn a general explicit description (e.g.
decision tree, neural network or rule set) of a discrete-valued target function (class label) when training
data is provided. This is in contrast with lazy learning methods, which simply store training data and delay
learning until a new instance must be classified. Each time a new test (query) instance is encountered, its
relationship to the previously stored objects is examined in order to assign a target function value for the
new instance. A key advantage of lazy learning methods is that instead of estimating the target function
at once for the entire instance space, they can estimate it locally and differently for each instance to be
classified [32]. This has significant advantages when either training data is noisy or the target function is
very complex, but can still be described by a collection of less complex local approximation [1]. Indeed,
since the test instance to be classified is known during the processing of training data, training a query-
specific local model is possible with lazy learning. This means constructing only a local approximation
of the target function that applies in the neighborhood of the new test instance and never constructing an
approximation designed to perform well over the entire training space.

Obviously, this highly adaptive behavior may cause high cost of classifying new objects. This is due
to the fact that nearly all computation takes place at classification time rather than when training objects
are first encountered. However, this problem is less relevant in SDA, since the number of SOs generated
from micro-data is generally much less than that of the original individuals.

A lazy learning method adopted in classification problems is the k-Nearest Neighbour (k-NN) algo-
rithm [42] that approximates a discrete-valued variable by assigning the discrete-valued target function
of the test instance ¢ with the most common value among the & nearest training objects. Neighbors are
here determined according to a distance measure d. An obvious refinement of the k-NN algorithm is to
weight the contribution of each of the k& neighbors according to their distance from the query instance ¢,
giving greater weight to closer neighbors [32].

In this work, we propose an extension of distance-weighted k-NN for SOs described by both a single-
valued target variable Y and m explanatory variables (either modal or set valued). More precisely, given
a set of SOs to be classified, the distance weighted k-NN method we propose produces, as output, a
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matrix P whose rows represent descriptions of SOs and whose columns represent all known classes.
Each element p;; of the matrix P is an estimation of the probability that SO; belongs to the class j and
> pij = 1. Estimate p;; is computed according to the neighborhood of SO, that is the & training objects

cjlosest to SO, with respect to a dissimilarity measure d.

The basic k-NN method assumes that all training cases correspond to points in the m-dimensional
space R and the nearest neighbors of the instance to classify are defined in terms of the standard
Euclidean distance. However, in our problem formulation, training observations are symbolic objects,
which cannot be associated to points of R™. Therefore, it is necessary to resort to a different notion of
dissimilarity measure that applies to SOs. The next section surveys some of the dissimilarity measures
defined on SOs implemented in the SODAS software.! A more detailed description is available in [15,
28,29].

3. Dissimilarity measures for symbolic objects

Henceforth, the term dissimilarity measure d on a set of objects O refers to a real valued function on
O x O such that: d} = d(a,a) < d(a,b) = d(b,a) < oo forall a, b € O. Generally, d; = d* for
each object a in O, and more specifically, d* = 0. Several dissimilarity measures have been proposed
for restricted classes of symbolic objects, namely Boolean Symbolic Objects (BSOs) and Probabilistic
Symbolic Objects (PSOs). The former are described by set-valued variables only, while the latter are
described by modal variables with a relative frequency distribution associated to each one.

3.1. Dissimilarity measurefor BSOs

Let ¢ and b be two BSOs described by m symbolic variables X; with domain X;. Let A; (B;) be
the set of values (subset of X;) taken by X; in a (b). A class of dissimilarity measure between a and
b is defined by aggregating dissimilarity values computed independently at the level of single variables
X; (componentwise dissimilarities). A classical aggregation function is the Minkowski metric (or L,
distance) defined on *"*: Another class of dissimilarity measures is based on the notion of description
potential 7(a) of a BSO a, which corresponds to the volume of the Cartesian product A1 x Ag x ... x Ay,
For this class of measures, no componentwise decomposition is necessary, so that no function is required
to aggregate dissimilarities computed independently for each variable.

Dissimilarity measures considered in this study are reported in Table 2 together with their short
identifier used in the SODAS software. They are:

— Gowda and Diday’s dissimilarity measure (U1) [19],

— Ichino and Yaguchi’s first formulation of a dissimilarity measure (U2) [20],

— Ichino and Yaguchi’s dissimilarity measure normalized (U3) [20],

— Ichino and Yaguchi’s normalized and weighted dissimilarity measure (U4) [20],

1SODAS (Symbolic Official Data Analysis System) was a three-year ESPRIT project concluded in November 1999. The
SODAS software can be downloaded from: http://www.ceremade.dauphine.fr/"touati/sodas-pagegarde.htm. The three-year
IST project ASSO (Analysis System of Symbolic Official Data) (http://www.info.fundp.ac.be/asso/) continued SODAS and
produced an improved version of the SODAS software.
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Table 2
Dissimilarity measures defined for BSOs
Name Componentwise dissimilarity measure Objectwise dissimilarity measure
Ul DW(A;,B) = DA(Ai,B;)) + Ds(Ai, Bi) + Z DW(A,, B;)
D.(A;, B;) where Dr(A;, B;) is due to position, i=1
Ds(Aj, B;)tospanningand D.(A;, B;) to content.
U2 (A, Bi) = |Ai @ Bi| — |Ai®@B;[4+7(2|As|@Bi| — ¢/ > [0 (As, By)?
|A;| — | Bi|) where meet (®) and join (&) are two i=1
Cartesian operators.

U3 (i, B) = S5 (/3 b (40 B

Us (A, B;) = 2B (/2 o (45 B

ClL  Di(Ai,Bi)=1—of(a+pB+X)

Ds(As, Bi) = 1—20/(2a+ B+ x) > [wiDr(Ai, B

D3(A;, Bi) =1~— /( +28 +2x) 1 =

D4(Ai,Bi)=1—1 :(355 25 >80

Ds(A;,B;)=1—a/+/(a+ B8)(a+ =t

s )= / o) X) where §(i) is the indicator function

SO1  with: x = p(c(4:) N By) Z [wi Dy (Ai, B;)]?

o = p(Ai N Bi);

B = p(Ai Ne(Bi)) o

For each subset U C X, p(U) = |U| if X is a

set-valued variable, while p(U) = |a — b| if X is

an interval variable with U = [a — b]. ¢(U) is the

complementary set of U in the domain X’.

S02 ' (A By) = FEHS \/; L[y (A, B,

SO3  none m(a & b)—7m(a® b)+vy(2r(a® b)—nr(a)—mn(b))
where meet (®) and join (@) are Cartesian opera-
tors defined on BSO.

SO4  none m(a®b)= ”(‘I@b”z(j;i()”@b) m(@)=m®) \where o is the
BSO obtained by associating the domain set A to the
symbolic variable X;

7 (a®b)—7m(a®b)+v(2m(a®b)—m(a)—m(b))

SO5  none :(a@b)

SO6  none 1 — [FlexMatch(a,b) + FlexMatch(b,a)]/2

— De Carvalho’s normalized dissimilarity measure for constrained? BSOs (C1) [13],
— De Carvalho’s dissimilarity measure (SO1) [12],

2The term constrained BSO refers to the fact that some dependencies are defined between two symbolic variables X; and X,
namely hierarchical dependencies which establish conditions for some variables being not measurable (not-applicable values),
or logical dependencies which establish the set of possible values for a variable X; conditioned by the set of values taken by
the variable X;. An investigation of the effect of constraints on the computation of dissimilarity measures is out of the scope
of this paper, nevertheless it is always possible to apply the measures defined for constrained BSOs to unconstrained BSOs.
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— De Carvalho’s extension of Ichino and Yaguchi’s dissimilarity (SO2) [12],

— De Carvalho’s first dissimilarity measure based on description potential (SO3) [13],

— De Carvalho’s second dissimilarity measure based on description potential (SO4) [13],

— De Carvalho’s normalized dissimilarity measure based on description potential (SO5) [13],
— dissimilarity measure based on flexible matching among BSOs (SO6).

The last measure (SO6) differs from the others, since its definition is based on the notion of flexible
matching [16], which is an asymmetric measure of similarity. The dissimilarity measure is obtained by
means of a symmetrization method that is common to measures defined for PSOs.

3.2. Dissimilarity measure for PSOs

Let ¢ and b be two PSOs of a symbolic data table and X a multi-valued modal variable describing
the two PSOs. The sets of probabilistically weighted values taken by X in a and b define two discrete
probability distributions P and @, whose comparison allows us to assess the dissimilarity between a
and b on the basis of X only. For instance, we may have: P = (red:0.3, white:0.3, black:0.3) and Q =
(red:0.1, white:0.2, black:0.7) when the domain of X is ={red, white, black}. Therefore, the dissimilarity
between two PSOs described by m symbolic variables can be obtained by aggregating the dissimilarities
defined on as many pairs of discrete probability distributions (componentwise dissimilarities). Before
explaining how to aggregate them, some comparison functions m (P, Q) for probability distributions, are
introduced.

Most of the comparison functions for probability distributions belong to the large family of “convex
likelihood-ratio expectations” introduced by both Csiszar [11] and Ali and Silvey [2]. Some well-known
exemplars of this family are:

— The KL-divergence, which is a measure of the difference between two probability distribu-
tions [24]. It is defined as mi (P, Q) = Yiecxq(x)log(q(z)/p(x)) and measures to which
extent the distributionP is an approximation of the distribution . It is asymmetric, that is
mirL(P,Q) # mkr(Q,P) ingeneral, and it is not defined when p(z) = 0. The KL-divergence is
generally greater than zero, and it is zero only when the two probability distributions are equal.

— The x*-divergence defined as m3 (P, Q) = Y,ex|p(z) — q(x)]*/p(z), is strictly topologically
stronger then KL-divergence since the inequality m x1.(P, Q) < mi(P, @) holds, i.e. the conver-
gence in y2-divergence implies convergence in KL-divergence, but the converse is not true [4].
Similarly to the KL-divergence, it is asymmetric and is not defined when p(z) = 0.

— The Hellinger Coefficient is a similarity-like measure given by
mB)(P,Q) := Yeexq®(z)p'~*(z), where s is a positive exponent with 0 < s < 1. From this

similarity-like measure Chernoff’s distance of the order s is derived as follows: mg)(P, Q) =

—logm(®) (P, Q). This distance diverges only when the two distributions have zero overlap, that is,
the intersection of their support is empty [21].

— Renyi’s divergence (or information gain) of order s between two probability distributions P and
Q is given by m%f) (P,Q) := —logm(®)(P,Q)/(s — 1). It is noteworthy that, as s —1, Rényi’s
divergence approaches the KL-divergence [36].

— The variation distance, given by m1(P, Q) := Y ecx|p(x) — q(x)|, is also known as Manhattan
distance for the probability functions p(x) and ¢(x) and coincides with the Hamming distance
when all features are binary. Similarly, it is possible to use Minkowski’s L, (or Euclidean) distance
given by mo(P,Q) := Z,cx|p(z) — ¢(x)|? and, more in general, the Minkowski’s L, distance
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with p € {1,2,3,....}. All measures m,(P, Q) satisfy the metric properties and in particular the
symmetry property. The main difference between m; and m,, p > 1, is that the former does not
amplify the effect of single large differences (outliers). This property can be important when the
distributions P and Q) are estimated from noisy data.

— The K-divergence is given by m x (P, Q) := Szexq(x)log(q(z)/(3p(x) + Lq(z))) [26], which is
an asymmetric measure. It has been proved that K-divergence is upper bounded by the variation
distance m1 (P, Q): mg (P, Q) < m(P,Q) < 2.

Some of the divergence coefficients defined above do not obey all the fundamental axioms that
dissimilarities must satisfy. For instance, the KL-divergence does not satisfy the symmetric property.
Nevertheless, a symmetrized version, termed J-coefficient (or J-divergence), can be defined as follows
J(P,Q) == mgr(P,Q) +mkr(Q, P). Alternatively, many authors have defined the .J-divergence as
the average rather than the sum J(P, Q) := (mir(P,Q) + mkr(Q, P))/2. Generally speaking, for
any (possible) non-symmetric divergence coefficient m there exists a symmetrized version m(P, Q) =
m(Q, P) + m(P, Q) which fulfils all axioms for a dissimilarity measure, but typically not the triangle
inequality. Obviously, in the case of Minkowski’s L,, coefficient, which satisfies the properties of
a dissimilarity measure and, more precisely of a metric (triangular inequality), no symmetrization is
required.

Given these componentwise dissimilarity measures, we can define the dissimilarity measure between
two PSOs a and b by aggregation through the generalized and weighted Minkowski’s metric:

dy(a,b) = i > leim (Ai, By)JP

i=1

where, Vk € {1, ..., n}, ¢, > 0 are weights with X1 ¢, = 1 and m(A;, B;) is either Minkowski
L, distance (LP) or a symmetrized version of J-coefficient (J), x2 — divergence (CHI2), Rényi’s distance
(REN), and Chernoff’s distance (CHER). These are all variants of the dissimilarity measure denoted as
P1 in the SODAS software.

Alternatively, the dissimilarity coefficients can be aggregated through the product. Therefore, by
adopting appropriate precautions and considering only Minkowski’s L, distance, we obtain the following
normalized dissimilarity measure between PSOs:

ﬁ1 <<’/§— %: Ip(z:) — Q(wz‘)\p> (V2 - ¢/L,)
: i

(¥2)" (¥2)"

where each z; corresponds to a value of the i-th variable domain.

Note that this dissimilarity measure, denoted as P2 in the SODAS software, is symmetric and normal-
ized in [0, 1]. Obviously d,(a,b) = 0 if a and b are identical and d;,(a,b) = 1 if the two objects are
completely different.

Finally, the dissimilarity measure between two PSOs a and b, can be computed by estimating both the
matching degree between a and b and vice-versa. The measure denoted as P3 in the SODAS software,
extends the measure SO6 defined for BSOs.

A summary of the three dissimilarity measures defined on PSOs is reported in Table 3.

m
=1

dy(a,b) =1 —
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Table 3
Dissimilarity measures defined for PSOs
Name Componentwise dissimilarity measure Objectwise dissimilarity measure

P1 Either m,(P,Q) or a symmetrized ver- p/>" [esm (As, Bi))P

sion of mir(P,Q),mi(P,Q), mg(P,Q), V!

m§ (P, Q)

H (V— X/ "LP(AbBi))

P2 mp(P, Q) 1 _ i=t =
P3 none 1 — [FlexMatch(a,b) + FlexMatch(b,a)]/2

4. Symbolic objects nearest neighbour classification

In a quite general formulation, the classification problemin SDA can be defined as follows:
Given a set O of n training cases (z,y) € X x Y, such that = is a vector denoting a symbolic
description on the space of symbolic variables X = B1x ... xB,,, While y represents the category

value (class) that belongs to a finite set Y = {c1,...,¢}; the goal is to predict the value of the class
variable Y for a SO (testing case) ¢ described by the same symbolic variables B+, ..., B,, as the training
data.

A method that solves the problem stated above is SO-NN that extends the distance weighted k£-NN
classifier towards SDA. The k-NN algorithm is a simple, well-known lazy learning technique that requires
only a dissimilarity measure d, a positive integer k and a set of labeled training examples O, named
prototypes. A new (unlabelled) example ¢ is assigned to the label most frequently represented among
its k£ nearest neighbors, that is, the set of & prototypes which are most similar to ¢ with respect to d.
This means that those training examples very different from ¢, are completely ignored. In the standard
k-NN method, each training example in the neighborhood contributes to the classification with the same
“weight”, independently of how dissimilar it is from the test example ¢. A natural extension of k-NN is
to weight the contribution of each neighbor on the basis of its dissimilarity to test case ¢, giving greater
weight to more similar neighbors. This extension is known as distance-weighted k-NN [32].

The main difference between classical distance-weighted £-NN and lazy classification performed by
SO-NN is the dissimilarity d(q, o) between ¢ and its potential neighbors o € O. Indeed, in classical
k-NN, training examples are real-valued in an m-dimensional Euclidean space, while in SDA training
examples are SOs that cannot be simply associated to points of ™.

In Section 3 several dissimilarity measures have been reported for BSOs and PSOs. However, in
general a SO can be described by both modal and non-modal variables. For mixed SOs, no new
measures are defined, since it is possible to separate the Boolean from the Probabilistic part of the SO,
and then to compute two dissimilarity measures separately. The combination of the two measures can
be either additive or multiplicative, although special care must be taken when a choice is made.

A top-level description of SO-NN is reported in Fig. 1. SO-NN returns a modal variable Y’ rather
than a single-valued class label. Modalities correspond to the probabilities of class membership for each
of the [ classes. Details on the estimation of the probabilities are reported in the next subsections.

4.1. Estimating class probabilities

Let us consider a test SO ¢ to be classified according to the k-sized neighborhood O 1. (q) = {o1, ..., 0%}
determined on the training data O by considering the & SOs closest to g with respect to a dissimilarity mea-
sure d. SO-NN returns the value ' of an /-dimensional class probability vector y' = (y1(q), ..., y1(q))
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Training step
Store the set O of n training SOs described by both m symbolic variables X;
(predictor variables) and single-valued target variable Y (class variable) with
range in the finite set ¥= {c Leees c,} ;

Classification step
Given a test SO g = (x;(g), ..., x,(q)) to be classified
Determine O(q), that is, the set of £ SOs in O closest to ¢ according to
a dissimilarity measure d
Compute y’ = (y,,...,),) that is the vector of probabilities of class labels
(C‘], ey C1) on Ok(q)
return (x,(q), ..., Xx(q), y’)

Fig. 1. SO-NN algorithm for approximating unknown value of single-value categorical.

associated to ¢, such that [ is the number of distinct classeson Y. Each y; = P(Y (¢) = ¢1) is estimated
on Ox(q).
Intuitively, P(Y (¢) = ¢1) can be simply estimated as:

P(Y(q) = ¢;) = {o; € Ok(q)/LY(oj) - ci}!’

such that P(Y(q) = ¢;) > 0foreachi =1,...,land > P(Y(q) = ¢;) = 1. This means that all the &

(2
nearest neighbors of a test SO ¢ equivalently contribute to estimate the class probability vector 3.

The alternative is to weight the contribution of the k& neighbors on the basis of the dissimilarity value
with respect to ¢, giving greater weight to closer neighbors [32]. In particular, the class probability
vector can be estimated by weighting the contribution of each neighbor o ; according to the inverse of its
dissimilarity value with respect to ¢. Indeed, this weighting strategy has been proved to perform better
than bo weighted £-NN for finite samples [44].

Letw; = m be the weight associated to each neighbour o ;, we denote:
k
W, = ijé(ci, Y(0j)Vi=1,...,1,
j=1

where 6(c;, Y (¢;)) = 1if¢; = Y (0;5), 6(¢4, Y (05)) = 0, otherwise. Hence, the output class probabilities
are estimated as follows:

{os€0L@IY (o)=ci}l o yy7.
P(Y(q) = ¢;) = . Vi=1,.,1
3 |{Oj€0k(CI)ILY(Oj)=C¢}| < Wi
=1

The normalization by the summarization of all weighted class probabilities is required to guarantee
that each probability class value is between 0 and 1 and the sum of the probabilities of all possible
outcomes is 1.

Finally, the single-class output Y'(¢) is obtained by returning the class ¢; such that [P(Y (¢) = ¢;)] =
max(P(Y(q) =c1),...,P(Y(q) = a)).

This weight-based estimation of class probabilities poses some problems due to the possible presence
of one or more neighbors o; € Ox(q) with d(q,0;) = 0. We denote by O?(q) the proper sub-set of
Oy(g) such that OQ(q) = {o; € Ox(q)|d(g,0;) = 0}. When O}(q) is not empty (i.e., |OR(q)| # 0),
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P(Y(q)=c;) is an indeterminate form. To face this problem, we extend the solution discussed in [32]
to the symbolic classification, that is, when there is exactly one neighbor o; with d(g, 0;) = 0, the same
class of o; is assigned to ¢q. More in general, if there are several neighbors o; € Oy (q) with d(q,0;) =0
(i.e., |02(q)| > 1), the majority classification among them is assigned to ¢q. By following this suggestion,
SO-NN determines the class probability vector y1(q), . . ., 4:(¢) according to only neighbors o; € O%(q)
when this set is not empty.

Two cases can be distinguished. Inthe first case, thatis, O (¢) # 0AY (¢) = Y (0;) = ¢,Yo, € OY(q),
the class probability vector is computed as follows:

P(Y(q) =c)=1and P(Y(q) = ¢;) = 0V¢; # c.

In the second case, that is, 3o;, 0; € OY(q) s.t. 0; # 0j A Y (0;) # Y (0;), the class probability vector
is estimated as follows:

0s 0 0:) = ¢;
POY(g) = ) = 1 JeO;gégf ) =ci)

by considering only class values taken by neighbors of ¢ falling in og(q).

Ni=1,...,1,

4.2. Sdecting the optimal & value

The performance of a k-NN classifier significantly depends on the size (k value) of the neighborhood
used to predict the unknown class value of a test case ¢ and a different size is appropriate for different
problem domains.

In general, a k-NN classifier may work either as a global method using all training cases (k = n) to
classify a new test case or as a local method using only the & (k¥ < n) nearest training cases. In the
latter case, only data local to the region around ¢ actually contributes to estimating class probabilities.
Henceforth, we will make the assumption that a single value of & suffices to classify all testing cases ¢.
This means that, in this work, we will consider only local methods with global determination of k.

Local methods have significant advantages when the probability distribution defined on the space of
SOs for each class value is very complex, but it can still be described by a collection of less complex
local approximations. Consequently, the choice of & is critical, since it represents a trade-off between
local and global approximations of the probability measures.

The choice of an appropriate value of £ can be based on a v-fold cross-validation approach. More
precisely, the original training set O is partitioned into v blocks (or folds) of near-equal size, then, for
every block, SO-NN is tested on it by using all the other blocks as a training set. In this way, the
accuracy of SO-NN on each hold-out block is estimated and the average accuracy on the v blocks can be
considered as an approximation of SO-NN when all observations in O are used as training examples. In
our experimentation, we followed the recommendation of choosing a value of v equals to 10 (ten-fold
cross validation) [22].

The estimated accuracy of the SO-NN classifier for different values of & enables the selection of the
optimal k. Theoretically, we should try for different values of & ranging in the interval [1, n]. Luckily,
as observed in [44] it is not necessary to consider all possible values of & during cross-validation to
obtain the best performance: best performances are obtained by means of cross-validation on no more
than approximately ten values of £. A similar consideration has also been reported in [18], where it is
shown that the search for the optimal % can be substantially reduced from [1, n] to [1, \/n], without
loosing too much accuracy in the approximation. Following this suggestion, the best & is found on the
sample [1, \/n] and optimal & can be approximated with this value without compromising accuracy in
the approximation.
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5. Experimental evaluation

SO-NN, whose implementation is publicly available,? has been empirically evaluated on symbolic data
extracted from both real-world data and artificially generated data. These datasets collect information on
individuals of fixed populations described by both a discrete target variable and one or more (continuous
and discrete) explanatory variables resulting just in a single value. We used the DB2SO tool * [41] to
aggregate original data on the basis of the values taken by some grouping variables. Grouping variables
of each dataset include both the target variable and a subset of the explanatory variables describing the
original data. The choice of the explanatory variables was performed on a case-by-case basis, after
having examined the documentation provided with each dataset.

Both BSOs and PSOs have been generated in our experimental setting. In the case of PSOs, continuous
variables have been a-priori discretized to generate modal symbolic variables.

To investigate the performances of SO-NN for distinct dissimilarity measures we had to solve a tech-
nical problem, due to the fact the computation of some dissimilarity measure for PSOs is indeterminate
when a distribution has a zero-valued probability for some categories. To overcome this limitation, we
used the KT-estimate [23] to estimate the probability distribution of modal variables. This estimate is
based on the idea that no category of a modal symbolic variable in a PSO can be associated with a zero
probability. The KT-estimate is computed as:

(No. times y occursin {Ry,...,Ry}) +1/2

p(y) = M+ (K2) ,

where y is the category of the modal symbolic variable, { R+, ..., Ry, } are sets of aggregated individuals,
M is the number of individuals in the class, and K is the number of categories of the modal symbolic
variable.

Each symbolic dataset was partitioned into training set (70%) and testing set (30%) and accuracy
performances were computed as follows:

! S 6(0j(Y), class(os(Y))

A=
|TestingSet| ,
oj€TestingSet

where class(o;(Y)) is the predicted class for a test SO o; and 6(o;(Y"), class(o;(Y")) is the indicator
function equal to 1 if 0,;(Y") = class(0;(Y")), 0 otherwise.

Accuracy performed by SO-NN in classifying test SOs was evaluated by varying the dissimilarity
measure d used to determine the neighborhood of a testing case. Let o; be a test SO, SO-NN computes
the probability vector pq(0;), . .., pi(0;), where p;(o;) denotes the probability that o; belongs to the class
c; on the basis of the class values taken by the & nearest neighbors of o, in the training set.

The predictive accuracy of SO-NN was also compared to that of TREE,® which is a state of the
art classification system for symbolic data, whose theoretical foundations are found in [10]. TREE
induces a binary decision tree from symbolic training data described by both set-valued and modal
symbolic variables. Similarly to SO-NN, the target variable is a single-valued categorical variable.

3http://www.di.uniba.it/~malerba/software/SONN/index.htm.

“We have actually implemented a version of DB2SO that supports the extraction of SOs by a process involving the querying
of a relational database.

5The version of TREE considered in this work is that available in the ASSO workbench.
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Candidate splits are evaluated by means of either the Gini measure or the Generalized Information (GInf)
measure while leaves are associated with the most frequent class value over the training data falling in
the corresponding leaf partition. TREE also allows the construction of decision trees with fuzzy tests
associated with internal nodes.

TREE requires users to specify the minimal number of SOs falling into a split node. The choice of this
threshold strongly affects the size of the induced tree (i.e. number of leaves). Indeed, a low value may
cause the so-called overfitting of training data leading to a loss of accuracy in several applications [35].
In all experiments reported in this study we followed the empirical suggestion given in [31] and imposed
that the minimal number of SOs falling into a split node must be greater than the root square number of
SOs falling in the entire training set.

5.1. Experimental results on benchmarksfor classification task

SO-NN was tested on symbolic data extracted from twelve datasets taken from the UCI Machine Learn-
ing Repository (URL.: http://www.ics.uci.edu/~mlearn/MLRepository.html). Details on these datasets
are reported in Table 4.

For each dataset, both BSOs and PSOs have been generated. In the case of PSOs, continuous variables
have been a-priori discretized to generate modal symbolic variables. To this aim, we used the Relative
Unsupervised DiscrEtization (RUDE) algorithm, which discretizes a continuous variable in the context
defined by remaining continuous variables [27].

However, the high computational complexity of contextual discretization, prevents the application of
RUDE to the one hundred and sixty-six continuous variables describing both “Musk 1” and “Musk 2”
data. In this case, we used an equal-width discretization [8] that divides the range of each continuous
variable into a constant number (i.e., 10) of intervals of equal width.

In addition to symbolic data extracted from UCI datasets, we considered the dataset “Taxonomy”
produced in the context of the European project ASSO.6 This dataset collects forty BSOs described
according to sixteen symbolic variables (one interval variable, eight single-valued categorical variables
and seven single-valued continuous variables).

For this data, we identified two different experimental settings where the goal of symbolic classification
is significant. In the first setting, namely “Taxonomy 1”, the goal is to predict the symbolic categorical
variable “color” with domain {“white”, “color”}, while in the second setting, namely “Taxonomy 2”, the
goal is to predict the symbolic categorical variable “k3k2” with domain {*“11”, “12”}. In both settings
ten missing values occur on some explanatory variables.

In all experiments reported in this section, SO-NN performances are described in terms of estimated &
value, classification accuracy and running time by varying the dissimilarity measure d. It is noteworthy
that all these results concern the use of Dy as componentwise function in the case of C1 and SO1
dissimilarity measures.

This depends by the fact that experiments on real data have enlighten no significant variation when
varying the componentwise function D;.

Results on the number of neighbors (k) are reported in Table 5. It is noteworthy that the & value
estimated according to a 10-fold cross validation of training data varies only when SO-NN is tested on
BSOs and PSOs extracted from Adult, Dermatology and Pima datasets. However such variations do not
show any clear dependence between the estimated & value and the dissimilarity measure d. The only

5The dataset is distributed with the ASSO workbench available at http://www.info.fundp.ac.be/asso/.
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Table 4
UCI datasets used in the empirical evaluation of SO-NN
Data sets No. Cases No. Variables Grouping variables No. SOs  Class
Cont  Discr

Adult 32561 6 9 Category, education, occupa- 1134 Income (“$50K”or “< $50K™)
tion, work class

Dermatology 366 1 33 Category, borders, erythema, 302 Type of erythematic squa-
family mous disease (““cronic dermati-
history, follicular papules, fol- tis”, “lichen planus”, “pityria-
licular horn plug, itching, knee sis rosea”, “pityriasis rubra pi-
and elbow involvement, koeb- laris”, “psoriasis” or “seboreic
ner phenomenon, oral mu- dermatitis”)
cosal involvement, polygonal
papules, scaling, scalp

Flare 1C 323 0 11 C-category flares production, 59 Count of solar flares of C-class
code for class, code for occuring in a 24 hour period
largest spot size, code for spot (07, “1” or “27)
distribution

Flare 1M 323 0 11 M-category flares production, 57 Count of solar flares of M-class
code for class, code for occuring in a 24 hour period
largest spot size, code for spot (07, “17, “2” or“4™)
distribution

Flare 1X 323 0 11 X-category flares production, 43 Count of solar flares of X-class
code for class, code for occurring in a 24 hour period
largest spot size, code for spot (“0” or “1™)
distribution

Flare 2C 1066 0 11 C-category flares production, 122 Count of solar flares of C-class
code for class, code for occurring in a 24 hour period
largest spot size, code for spot (“o~, “17, “27, “37, “4”, “5”,
distribution “6” or “8”)

Flare 2M 1066 0 11 M-category flares production, 70 Count of solar flares of M-class
code for class, code for occurring in a 24 hour period
largest spot size, code for spot (“0”, “17, “2”, “4” or “5”)
distribution

Flare 2X 1066 0 11 X-category flares, code for 51 Count of solar flares of X-class
class, code for largest spot occurring in a 24 hour period
size, code for spot distribution (“0”, “1” or “27)

Musk1 476 166 3 Category, molecule name, 92 Molecule type (“musk” or “non
conformation name musk™)

Musk2 6598 166 3 Category, molecule name, 102 Molecule type (“musk” or “non
conformation name musk™)

Mushroom 8124 0 23 Category, cap colour, cap 133 Mushroom type (“poisonous”
shape, cap surface or “edible”)

Pima 768 8 1 Category, age, number of 385 Tested positive for diabetes

times pregnant

(“true” or “false™)

clear regularity observable in Table 5 is that & tends to be close to the highest permitted value (/n). This
means that in the trade-off between bias and variance, the increase of bias due to larger size of O (q)
when estimating probabilities is well compensated by the decrease of variance (distribution of cases in
Oy (q)) between the [ classes [17].

Results on accuracy performed by both SO-NN and TREE are reported in Table 6 for BSOs, while
in Table 7 for PSOs. These results concern both accuracy performed by SO-NN when varying the
dissimilarity measure and accuracy performed by TREE when varying the splitting measure.

Mean value and standard deviation of accuracy performed by both methods on such datasets are
reported in Table 8. Several conclusions can be drawn from these experimental results.
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Table 5
The values of k estimated by SO-NN according to a ten-fold cross validation on training data by varying the dissimilarity
measure (DM)

DM Adult Derma Flare Flare Flare Flare Flare Flare Muskl Musk2 Mush Pima Taxon Taxon
tology 1C M 1X 2C 2M 2X k1 k2 room omyl omy2
Ul 13 15 7 6 6 9 7 6 8 9 10 17 5 5
u2 25 15 7 6 6 9 7 6 8 9 10 16 5 5
U3 28 15 7 6 6 9 7 6 8 9 10 17 5 5
U4 28 15 7 6 6 9 7 6 8 9 10 17 5 5
C1 2 15 7 6 6 9 7 6 8 9 10 8 5 5
SO1 2 15 7 6 6 9 7 6 8 9 10 16 5 5
S02 2 15 7 6 6 9 7 6 8 9 10 10 5 5
SO3 2 15 7 6 6 9 7 6 8 9 10 17 5 5
S04 2 15 7 6 6 9 7 6 8 9 10 15 5 5
SO5 2 15 7 6 6 9 7 6 8 9 10 8 5 5
S06 2 15 7 6 6 9 7 6 8 9 10 16 5 5
P1-J 28 15 7 6 6 9 7 6 8 9 10 2 - -
P1-CHI2 28 15 7 6 6 9 7 6 8 9 10 2 - -
P1-REN 2 4 7 6 6 9 7 6 8 9 10 17 - -
P1-CHER 2 4 7 6 6 9 7 6 8 9 10 17 - -
P1-LP 14 15 7 6 6 9 7 6 8 9 10 2 — —
P2 28 15 7 6 6 9 7 6 8 9 10 2 - -
P3 22 13 7 6 6 4 7 6 8 9 10 16 - -
Table 6

SO-NN vs. TREE on BSOs: accuracy on testing set. SO-NN is evaluated by varying dissimilarity measure, while TREE is
evaluated by varying the nature of splitting test, i.e. pure splits with either Generalized Information (GInf) measure or Gini
measure as splitting criterion or fuzzy splits. Best accuracy is in italics

SYSTEM Adult Derma Flare Flare Flare Flare Flare Flare Muskl Musk2 Mush Pima Taxon Taxon
tology 1C 1M 1X 2C 2M 2X k1l k2  room omyl omy2

SO-NN U1 078 094 065 081 092 037 052 087 067 070 0.85 058 0.83 0.83
u2 064 061 065 081 092 037 052 087 059 077 09 065 083 05
(UK} 077 097 065 081 092 034 052 087 056 073 087 071 083 0.67
U4 077 097 065 081 092 034 052 087 056 073 087 071 083 0.67
C1 064 091 065 081 092 037 052 087 0.7 063 092 061 083 0092
So1 064 091 065 081 092 037 052 087 0.7 063 092 061 083 0.92
SO2 0.7 091 065 081 092 037 052 087 0.7 063 092 062 083 0.75
SO3 0.6 043 059 075 075 037 052 087 056 073 090 061 083 0.67
S04 0.6 043 059 075 075 037 052 087 056 073 090 061 083 0.58
SO5 0.6 043 059 081 083 037 052 087 056 06 097 059 083 0.67
SO6 073 095 065 081 092 037 052 087 056 073 0.97 063 092 0.67
Best 078 097 065 081 092 037 052 087 0.7 077 097 071 092 092
SONN

TREE GInf 079 089 0.7 0.62
Gini 079 0.88 0.7 0.68
Fuzzy 059 039 0.7 0.75
Best 079 089 07 0.75
TREE

038 0.56 error 048 0.8 094 068 083 058
0.33 056 error 048 0.8 0.89 066 0.83 0.58
033 056 08 059 073 089 07 083 058
038 05 086 059 08 094 07 083 058

N

First of all, SO-NN appears able to take advantage of the highly adaptive behavior of the lazy learning
approach to locally approximate the class value of a test SO without compromising the accuracy of
prediction. Indeed, SO-NN generally classifies test SOs better than or, at worst, approximately equally



316 A. Appice et al. / Classification of symbolic objects: A lazy learning approach

Table 7
SO-NN vs. TREE on PSOs: accuracy on testing set. SO-NN is evaluated by varying dissimilarity measure, while TREE is
evaluated by varying the nature of splitting test, i.e. pure splits with either Generalized Information (GInf) measure or Gini
measure as splitting criterion or fuzzy splits. Best accuracy is in italics

SYSTEM Adult Derma Flare Flare Flare Flare Flare Flare Muskl Musk2 Mush Pima
tology 1C 1M 1X 2C M 2X k1 k2 room
SO-NN P1 0.62 0.94 059 069 075 024 057 087 0.7 0.63 0.82 0.63

CHI2  0.58 093 059 069 075 024 057 087 067 0.63 059 0.63
REN 0.32 078 059 069 1 021 057 087 0.74 0.63 0.56 0.61
CHER 0.32 078 059 069 1 021 057 087 074 0.63 056 0.1

LP 0.59 0.93 059 063 083 032 057 087 0.67 0.6 0.85 0.63

P2 0.73 0.93 053 081 092 024 061 0.87 0.7 0.57 0.79 0.60

P3 0.62 0.1 071 088 1 0.26 061 0.87 0.44 0.63 0.62 0.64

Best SONN  0.73 0.94 071 088 1 032 061 0.87 0.74 0.63 0.82 0.64

TREE GInf error 0.44 0.70 0.87 error error error error 0.74 0.73 error  Error
Gini 0.73 0.90 070 087 1 0.30 056 error 0.74 0.7 0.94 0.66

Fuzzy 0.59 039 070 075 1 error error 0.86 0.55 0.7 error  0.66
Best TREE  0.73 0.9 0.7 087 1 0.3 0.5 086 0.74 073 094 0.66

Table 8
The mean and standard deviation of the accuracy performed for each symbolic dataset

Dataset BSOs PSOs

SO-NN TREE SO-NN TREE

Mean  St. Dev. Mean  St. Dev. Mean  St. Dev. Mean  St. Dev.

Adult 0.68 0.07 0.69 0.12 0.54 0.16 0.67 0.10
Dermatology ~ 0.77 0.24 0.62 0.31 0.77 0.30 0.58 0.28
FlarelC 0.63 0.03 0.71 0 0.60 0.05 0.71 0
FlarelM 0.80 0.02 0.69 0.06 0.73 0.09 0.83 0.07
Flare1X 0.88 0.07 1.00 0 0.89 0.12 1.00 0
Flare2C 0.36 0.01 0.35 0.03 0.25 0.04 0.31 0
Flare2M 0.52 0 0.56 0 0.58 0.02 0.57 0
Flare2X 0.87 0 0.87 0 0.87 0.00 0.87 0
Musk 1 0.61 0.07 0.52 0.06 0.67 0.10 0.68 0.11
Musk 2 0.69 0.06 0.78 0.04 0.62 0.02 0.71 0.02
Mushroom 0.77 0.24 0.91 0.03 0.68 0.13 0.95 0
Pima 0.63 0.04 0.69 0.02 0.62 0.01 0.67 0
Taxonomy1l 0.71 0.13 0.58 0 - - - -
Taxonomy?2 0.84 0.03 0.83 0 - - - -

to TREE.” This is confirmed by results of the pairwise comparison between SO-NN and TREE when
considering for each dataset the best accuracy obtained by varying the dissimilarity measure and the
splitting measure, respectively.

The pairwise comparison is performed according to the non-parametric Wilcoxon test [34] by assuming
that the experimental results (i.e., accuracy) of the two methods compared are independent pairs of sample
data {(uy, v1), (U2, Va2}), ..., (Un, V,)}. We then rank the absolute value of the differences |u; — v4|.
The Wilcoxon statistics W and W~ are the sum of the ranks from the positive and negative differences,
respectively.

We test the null hypothesis Hy: “no difference in distributions” against the two-sided alternative Hy:

"TREE performs better than SO-NN only on the BSOs extracted from Adult, Flare 1-C, Flare 1-X, Flare 2-C, Flare 2-M and
Musk 2 and the PSOs extracted from Musk2, Mushroom and Pima. However, differences in accuracy are of the order of 10~2
with respect to the best result reported for SO-NN.
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SO-NN running time on BSOs

10000,00
100,00
1,00
0,01 -
—e— Adult —m— Dermatology FlarelC
—>— FlarelM —¥— FlarelX —e— Flare2C
—+— Flare2M —=—Flare2X —=— Musk1
—— Musk2 —— Taxonomyl Taxonomy2
——Pima

SO-NN running time on PSOs

10000,00
100,00
1,00
0,01
—e— Adult —m— Dermatology FlarelC —>— FlarelM
—¥— FlarelX —e— Flare2C —+— Flare2M —=— Flare2X
—=— Musk1 —&— Musk2 —J—Pima

Fig. 2. SO-NN running time by varying dissimilarity measure. For each symbolic dataset, running time is represented in a
logarithmic scale.

“there is a difference in distributions”. More formally, the hypotheses are: Hq: “u, = p,” against
Hi: “uy # p,”. Intuitively, when W+ > W~ and vice-versa, Hy is rejected. Whether W™ should be
considered “much greater than” W~ depends on the significance level p (p < «). The basic assumption
of the statistical test is that the two populations have the same continuous distribution (and no ties occur).
Since, in our experiments u; and v; are the classification accuracy on the same testing sets, W > W~
implies that the first method (U) is better than the second (V). In particular, when we compared the best
accuracy performed by SO-NN with best accuracy performed by TREE on each dataset we obtained that
WT =69, W~ = 36 and p = 0.32 in the boolean case and W+ = 22,5, W~ = 225and p = 1 in the
probabilistic one. This confirms that SO-NN and TREE are statistically equivalent when considering the
best accuracy returned by both methods.

A second observation concerns the effect of missing values. In both “Taxonomy 1” and “Taxonomy
2” ten missing values occur on some explanatory variables. In both cases SO-NN performs better than
TREE (0.92 vs. 0.83 on “Taxonomy 1” and 0.92 vs. 0.58 on “Taxonomy 2™).

A third observation concerns the dissimilarity measure d used to both determine and weight neighbors
in training data for each test SO to be classified. By varying d, we observe a variation on not only the
accuracy of classification, but also the running time to classify the set of test SOs. SO-NN running time
is shown in Fig. 2. For each symbolic dataset (either BSOs or PSOs), SO-NN running time (in seconds)
to classify the entire test set is reported along the vertical axis in a logarithmic scale, while dissimilarity
measures are listed along the horizontal axis.

By analyzing the accuracy of SO-NN classification on BSOs, we observe that only in the case of
BSOs extracted from either “Flare-2M” or “Flare-2X”, SO-NN accuracy on the test set is persistently
0.52 and 0.87 respectively, also when varying the dissimilarity measure. Consequently, in both cases
the standard deviation of SO-NN accuracy when varying dissimilarity measure is 0. On the other hand,
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Table 9
Results of the Wilcoxon test (p-value) on the accuracy of the classification performed by SO-NN on BSOs when comparing the
dissimilarity measure reported on each row vs. the dissimilarity measure reported on each column. The statistically significant
values p-value < 0.07 are in italics. The sign + (—) indicates W+ > W— (W 4+ < W-), that is, the dissimilarity measure on
the corresponding row outperforms the dissimilarity measure on the corresponding column (or vice-versa)

p value SO-NN

Ul u2 U3 u4 C1 So1 S02 S03 S04 S05 SO6
U1 1 0.21 1 1 0.81 0.81 046  (+)0.02 (+)0.02 (+)0.07 0.94
u2 0.21 1 0.31 0.31 0.43 0.43 029 (+)0.07 (+)0.07 0.25 0.10
U3 1 0.31 1 1 1 057 (+)0.05 (+)0.03 (+)0.01 (+)0.07 0.68
u4 1 0.31 1 1 1 0.57 0.84  (+)0.03 (+)0.01 (+)0.07 0.68
c1 0.81 0.43 1 1 1 1 1 (+)0.03 (+)0.03 (+)0.02 0.74
so1 0.81 0.43 0.57 0.57 1 1 1 (+)0.03 (+)0.03 (+)0.02 0.74
S02 0.46 0.29 0.05 0.84 1 1 1 (+)0.02 (+)0.01 (+)0.01 0.54
SO3 (-)0.02 (-)0.07 (-)0.03 (-)0.03 (-)0.03 (-)0.03 (-)0.02 1 1 0.81 0.81
S04  (—)0.02 (-)0.07 (-)0.01 (-)0.01 (-)0.03 (—)0.03 (—)0.01 1 1 0.81 0.81
SO5 (-)0.07 0.25 (-)0.07 (-)0.07 (-)0.02 (-)0.02 (-)0.01 0.1 0.81 1 (-)o.01
SO6 0.94 0.10 0.04 0.68 0.74 0.74 0.54 0.81 0.81 (+)0.01 1

in the remaining datasets, the choice of the dissimilarity measure evidently affects the accuracy of the
SO-NN classification. For instance, SO-NN accuracy is 0.95 when classifying test BSOs extracted from
“Dermatology” using neighbors defined and weighted according to the SO6 dissimilarity measure, but
the same accuracy decreases to 0.43 when neighbors are defined according to the SO5 dissimilarity
measure. This is confirmed by the corresponding high value of standard deviation (0.24) of SO-NN
accuracy on the Dermatology boolean dataset.

To complete the analysis of the dissimilarity measures for BSOs we discuss the results of Wilcoxon test
to evaluate the statistical differences on the accuracy performed by SO-NN for each pair of dissimilarity
measures. These results are reported in Table 9 and underline the worst performance of SO3, SO4 and
SO5 when adopted in k-NN classification on real data, while no significant behavior is observed for the
remaining dissimilarity measures.

On the other hand, when we analyze the running time, we observe that lower running time in the
classification step is reached only when SO-NN uses either U1 or SO6 dissimilarity measure to estimate
the distance between SOs in the neighborhood definition. It is noteworthy that, in this case, lower running
time often coincides with better accuracy in classification.

Different considerations are suggested when we analyze the accuracy of SO-NN classification and
neighbors are determined according to C1, SO1 or SO2 dissimilarity measures. In this case, higher
complexity in defining neighbors does not necessarily correspond to better classification accuracy.
Similar considerations are suggested when we jointly analyze the accuracy and running time of SO-NN
classification on PSOs. Higher running time is performed when the distance between two PSOs is
evaluated with a P1 dissimilarity measure by using either Rényi’s distance (REN) or Chernoff’s distance
(CHER) to estimate the dissimilarity coefficient between probability distributions, but it is quite difficult
to identify a dissimilarity measure that guarantees better accuracy on classifying unknown testing SOs
in each domain. This is confirmed by results of Wilcoxon test reported in Table 10. A solution can
be to automatically determine the best dissimilarity measure according to the accuracy of the SO-NN
classification on a cross validation of training data.

We conclude by observing that this study is quite different from previous work on dissimilarity
measures for BSOs [28], where the authors discussed the results with respect to the Monotonic Increasing
Dissimilarity (MID) property of dissimilarity measures. This kind of analysis is based on the assumption
that it is sensible to define a dissimilarity on all the variables used for grouping. In this case, indeed,
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Table 10
Results of the Wilcoxon test (p-value) on the accuracy of the classification performed
by SO-NN on PSOs when comparing the dissimilarity measure reported on each row vs.
the dissimilarity measure reported on each column

p value SO-NN

P1+J P1+CHI2 P1+REN P1+CHER Pl1+LP P2 P3
P1+J 1.00 0.13 0.38 0.38 0.95 0.57 1
P1+CHI2 0.13 1.00 0.58 0.58 0.31 0.20 0.38
P1+REN 0.38 0.58 1.00 1 0.50 0.37 0.50
P1+CHER 0.38 0.58 1.00 1 0.50 0.37 1
P1+LP 0.95 0.31 0.50 0.50 1 0.70 1
p2 0.57 0.20 0.37 0.37 0.70 1 0.70
P3 1.00 0.38 0.50 1 1 0.70 1

it is possible to check whether the degree of dissimilarity between SOs, computed on the independent
variables, is proportional to the dissimilarity computed on the grouping variables. For instance, in the
case of the Abalone dataset investigated in [28], the variable “number of rings” can be used to group the
original set of 4,177 individuals (a kind of marine crustacean). This integer variable ranges between 1
and 29 so that nine distinct BSO can be generated by considering intervals of length 3 (e.g., [1, 3], [4,
5], and so on). Since it is sensible to assume that two abalones with the same number of rings should
also present similar values for the other variables (e.qg., sex, length, diameter, height) used to describe the
crustaceans, we expect to observe a direct proportionality between the degree of dissimilarity between
BSOs computed on the independent variables and the difference in the number of rings (MID property).
The analysis of the MID property on the dataset reported in [28] showed that this property does not
hold when the dissimilarity measure is computed according to the U1 measure. Indeed, U1 surprisingly
discovers that old crustaceans with a high number of rings (25-29) are considered more similar to very
young ones with a low number of rings (1-3) than to middle-aged abalones with 16-18 rings. However,
this may depend on the fact that when BSOs are generated from unequally distributed individuals, with
respect to a given class variable, a distance measure based on the spanning factor (e.g. U1) may lead to
unexpected results [28].

5.2. Experimental results on artificial datasets

SO-NN was also tested on artificial data generated for the synthetic waveform recognition problem
described in [7, pp. 49-55]. This is a three-class problem that assumes an a-priori known model for data
generation. This model is based on the waveforms h1, ho and hg, which represent a shifted triangular
distribution defined as follows:

— h1(i) = max {6 — |i — 7|,0},
- hg(l) =h (’L — 4) and
~ ha(i) = h(i — 8).

Data have been generated for three classes of wave, namely ¢+, ¢; and ¢z such that 1000 individuals
have been built for each class ;. Each individual 7 is described according to 21 continuous variables X ;
(j =1,...,21) defined as follows:

— (i) = u(i)ha () + (1 — u(i))h2(4) + €;(i),

J
= (i) = u(@)h1(4) + (1 = w(@)hs(5) + €; (i),
- (i) = u(@)ha(j) + (1 — w(@i))hs(5) + €; (i),

1,...,21 for 4 labelled with ¢,
1,...,21 for 7 labelled with co,
1,...,21 for 7 labelled with c3,

Il
g2 e
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where U is an uniform random variable on the interval [0, 1] and E; (j = 1,...,21) are independent
Gaussian random variables with zero mean and unit variance.

For each class, data have been aggregated according to the uniform variable U. To this aim, we
considered four grouping modalities. The first one (L1) corresponds to build 10 SOs for each class c.
In particular, the description of each SO wave k- m (k = 1,2,3 and m = 1,...,10) is obtained with
DB2SO by generalizing the group of individuals ¢ of class ¢ with u(i) € [0.1(m — 1),0.1m]. The
second one (L2) generates 20 SOs for each class ¢, such that the description of wave k m(k = 1,2, 3 and
m = 1,...,20) isderived from the group of individuals i of class ¢;, with u(i) € [0.05(m—1),0.5m]. The
third one (L3) generates 50 SOs for each class c; such that the description of wave k_m (k£ = 1,2, 3 and
m = 1,...,50) is derived from the group of individuals i of class ¢, with u(i) € [0.02(m — 1),0.02m).
Finally, the forth one (L4) generates 100 SOs for each class c; such that the description of wavek m
(k = 1,2,3 and m = 1,...,100) is derived from the group of individuals i of class ¢, such that
u(7) € [0.01(m — 1),0.01m].

Both BSOs and PSOs have been generated. BSOs have been built in two different settings. In
the first setting (BSOs-Interval variables), descriptions of BSOs have been derived from original data
described by the continuous-valued variables X ; (j = 1,...,21). In the second setting (BSOs-Multi-
valued variables), continuous variables X ; have been a-priori discretized according to an equal-width
discretization [8] that divides the range of each continuous variable into a constant number (i.e., 10) of
intervals of equal width. BSOs are then built from such discrete-valued data. The same discrete data
have then been used to generate PSOs.

We used VDiss tool® to plot the SOs as points of a bi-dimensional plane. This scatterplot visualization
is based on an extension of the Sammon’s algorithm [39] that takes as input the dissimilarities among
each pair of SOs and returns a collection of points such that Euclidean distances among points preserve
original dissimilarity values. Scatterplot visualization of SOs built from this artificial data (see Fig. 3)
confirms that SOs are distributed in three clusters of spatially close points where each cluster correspond
to a different class label.

In Fig. 4 the results on accuracy performed by both SO-NN and TREE are reported. Results on such
artificial data confirms that SO-NN takes advantage of the highly adaptive behavior of the lazy learning
approach to locally approximate the class value of a test SO without compromising the accuracy of
prediction. Since these artificial data have been generated in order to preserve a correspondence between
the notion of proximity on the class variable and proximity on explanatory variables, some instructive
considerations on dissimilarity measures are suggested from corresponding variation of SO-NN accuracy.

Firstly, we observe that accuracy of SO-NN classification decreases when the componentwise function
D3 is adopted to compute the dissimilarity measures C; or SO; between BSOs. This result is quite
different from the corresponding result obtained on the BSOs extracted from real data where no significant
variation was observed when varying the componentwise function.

Secondly, SO-NN accuracy on BSOs whose descriptions include interval variables confirms the worst
performance of some dissimilarity measures such as SO3 and SO4.

6. Conclusions

Finding novel and interesting patterns in large databases without violating the inherent confidentiality
of micro-data is a great challenge for the Data Mining community. A review of the issues and state-of-
the-art of privacy-preserving data mining can be found in [43]. Basically, two approaches are identified:

8We have implemented VDiss tool that is actually available in the ASSO workbench.
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Fig. 3. Bi-dimensional plotting of the set of BSOs with interval variables built according to the L1 modality. Dissimilarity
among BSOs are computed with the Gowda and Diday’s dissimilarity measure (U1).

either perturbing the data by adding noise to it, or using cryptographic techniques to preserve privacy.
Symbolic Data Analysis developed since the early *80s, offers a third approach based on the analysis of
aggregated data, where aggregation is obtained through generalization over groups of individuals.

Several methods for the analysis of the symbolic data table have been reported in the literature. In
this paper, we considered only those conceived for classification purposes. They are all based on an
eager approach to learning, according to which a general explicit description (e.g. decision tree, neural
network or rule set) of a discrete-valued target function (class label) is built when training data are
provided. Alternatively, we proposed a lazy learning method, named SO-NN, based on the extension of
the k-NN classifier. A key advantage of this method is that instead of estimating the target function at
once for the entire instance space, it is possible to estimate it locally and differently for each observation
to be classified.

A comparison with a state of the art symbolic classification system, namely TREE, has been reported
on two restricted classes of symbolic objects (BSOs and PSOs), extracted from benchmark datasets.
Results show that SO-NN is generally able to exploit the highly adaptive behavior of the lazy learning
approach to locally approximate the unknown class value of a test SO without compromising the accuracy
of prediction also in the presence of missing values.

Moreover, since the core of SO-NN classification is the dissimilarity measure used to determine
and weight the neighbors of a test SO to be classified and the dissimilarity measure can be replaced
without any side effects, we have exploited SO-NN framework to compare several dissimilarity measures
proposed in the literature for both BSOs and PSOs.

One practical issue in applying k-NN is that the distance between observations is calculated based on all
explanatory variables. When many of the variables are irrelevant, these will dominate in the computation
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Fig. 4. SO-NN vs. TREE: accuracy on testing set. SO-NN is evaluated by varying the dissimilarity measure, while TREE is
evaluated by varying the nature of splitting test.

of the dissimilarity, thus resulting in a low predictive accuracy. An approach to overcoming this problem
is to weight each variable separately when computing the dissimilarity between two observations, in
order to suppress the effect of irrelevant variables. SO-NN naturally supports weighting mechanisms
for symbolic variables, since several dissimilarity measures proposed for both BSOs and PSOs allow
symbolic variables to be weighted. As future work we intend to explore this possibility in order to
improve the results already obtained with the proposed method.
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