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Abstract. The transformation of scanned paper docu-
ments to a form suitable for an Internet browser is a
complex process that requires solutions to several prob-
lems. The application of an OCR to some parts of the
document image is only one of the problems. In fact,
the generation of documents in HTML format is eas-
ier when the layout structure of a page has been ex-
tracted by means of a document analysis process. The
adoption of an XML format is even better, since it can
facilitate the retrieval of documents in the Web. Never-
theless, an effective transformation of paper documents
into this format requires further processing steps, namely
document image classification and understanding. WIS-
DOM++ is a document processing system that operates
in five steps: document analysis, document classification,
document understanding, text recognition with an OCR,
and text transformation into HTML/XML format. The
innovative aspects described in the paper are: the pre-
processing algorithm, the adaptive page segmentation,
the acquisition of block classification rules using tech-
niques from machine learning, the layout analysis based
on general layout principles, and a method that uses doc-
ument layout information for conversion to HTML/XML
formats. A benchmarking of the system components im-
plementing these innovative aspects is reported.

Key words: Document image analysis – Layout anal-
ysis – Induction of decision trees – Transformation into
HTML/XML format

1 Introduction

Recent advances in information and communication
technologies have increased the need for tools that are
able to transform data presented on paper into a web-
accessible format, such as HTML/XML. There are sev-
eral benefits to this transformation: the HTML/XML
version of a document can be accessed via Internet more
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quickly than the original bitmap, the user can manipu-
late the original document or search for particular words,
and it is possible to define some hypertext structures
which improve document reading (Worring and Smeul-
ders 1999). Commercial OCR systems are still far from
supporting this function satisfactorily. Most of them can
save scanned documents in HTML format, but generally
their appearance on the browser is not similar to the
original documents. Rendering problems, such as missing
graphical components, wrong reading ordering in two-
columned papers, missing indentation and broken text
lines, are basically due to poor layout information ex-
tracted from the scanned document. Moreover, no style
sheet is associated to documents saved in HTML for-
mat, so the presentation of textual information cannot
be customized for viewing.
Another limitation concerns the HTML language it-

self, which cannot represent the logical document struc-
ture. XML (eXtensible Markup Language) is a meta-
language, that is, a language that describes other lan-
guages, developed by the World Wide Web Consortium
(1998). It inherits some characteristics from HTML and
describes the content of documents that are stored in
electronic format. The most significant feature of XML,
optional but powerful, is the concept of DTD (Document
Type Definition), which specifies the logical hierarchy
of documents and can make information retrieval on the
Web easier (e.g., XML-QL is a language designed to ex-
press database-style queries in XML documents (Deutsch
et al. 1999)). Generally, a DTD is associated to a class of
documents with the same logical structure. For instance,
the DTD of home pages will define some logical elements,
such as name, surname, address, profession, and so on.
The reason why commercial OCR systems cannot gener-
ate documents in full XML format (that is, with a DTD)
is that they do not perform document image understand-
ing (Wang et al. 1999).
In order to transform printed documents into HTML/

XML format it is necessary to have knowledge of both
layout and logical structures, which are extracted by im-
age analysis and understanding processes. WISDOM++
(http://www.di.uniba.it/∼malerba/wisdom++/) is a doc-
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ument image analysis system that can transform paper
documents into either HTML or XML format by operat-
ing in five steps: document analysis, document classifica-
tion, document understanding, text recognition with an
OCR and transformation into a web-accessible format.
The document analysis process automatically extracts
the hierarchical layout structure used in the transfor-
mation into HTML format, while the document classifi-
cation process automatically recognizes the membership
class used to associate a style sheet to a document. In
the case of transformation into XML format, the result
of the document classification process affects the choice
of both the style sheet and the DTD, while the results of
the document understanding and text recognition steps
define the content of the .xml file. Documents in XML
format are a convenient means for storing and exchang-
ing all the data on the geometrical and logical structures
extracted in the five processing steps above (Hitz et al.
1999; Simske 1999).
One of the distinguishing features of WISDOM++ is

the use of a rule base to support some tasks performed
in the first three steps. The rule base is automatically
built from a set of training documents using symbolic
machine learning tools and techniques, which make the
system highly adaptive (Esposito et al. 1999). Real-time
user interaction is another relevant feature that affects
the design of the whole system. The behavioral design of
the interface partially follows the sequential interaction
style, in which the user action is controlled by the system
itself (Hix and Hartson 1993), and the glass-box model,
in which some system mechanisms are revealed to the
user (Wenger 1988).
In addition to document image generation in the

HTML/XML version, WISDOM++ presents several
novelties compared with its predecessor, PLRS (Esposito
et al. 1994).

1. Some decision tree learning techniques are now ap-
plied to the block classification problem, that is the
separation of text blocks from graphics, while the first
release of PLRS used a linear pattern classifier for
this task.

2. The symbolic learning technique applied to build the
rule base for the document classification and under-
standing steps has been extended in order to han-
dle both numeric and symbolic data. Indeed, some
experimental results on the document understand-
ing problem (Malerba et al. 1997a) have led to the
conclusion that mixed numeric/symbolic descriptions
are essential for generating accurate models of logical
structures.

3. WISDOM++ can manage multi-page documents,
each of which is a sequence of pages. The user is
responsible for the definition of the right sequence,
since the optical scan function is able to work on a
single page at a time. Pages of multi-page documents
are processed independently of each other in all steps.

4. WISDOM++ has also been designed as a multi-user
system, in the sense that each authorized user has
his/her own rule base. Two categories of users are
currently defined: administrators and final users. Ad-

ministrators are responsible for establishing which
classes of documents each final user can manage, for
determining the logical components that can be de-
tected in each class of documents, and for training
the system with a set of documents.

This paper provides a comprehensive explanation of
the document analysis process performed by the new
system WISDOM++, whose earlier versions have been
partially described in previous works (Malerba et al.
1997b; Esposito et al. 1999; Altamura et al. 1999). In
particular, Sect. 2 describes the main preprocessing step,
namely deskewing, implemented in the document anal-
ysis system, and Sect. 3 illustrates the adaptive docu-
ment block segmentation and classification techniques.
The knowledge-based extraction of the layout structure
is covered in Sect. 4, while the adaptive document classi-
fication and understanding is briefly reviewed in Sect. 5.
Section 6 explains the layout-based transformation of
scanned paper documents into a form suitable for an
Internet browser. Finally, some experimental results are
reported in Sect. 7.

2 Data capture and preprocessing

Each page of a multi-page document is optically scanned
with a resolution of 300 dpi and thresholded into a bi-
nary image. The bitmap of an A4-sized page takes about
2, 496× 3, 500 = 1, 092, 000 bytes and is stored in TIFF
format. The image is associated with a coordinate sys-
tem whose origin is in the top left-hand corner; the X-
coordinate increases from the leftmost to the rightmost
column, while the Y-coordinate increases from the up-
permost to the lowest row.
The segmentation of the page is performed by a top-

down method, which is quite fast, but generally ineffec-
tive when applied to skewed documents. Consequently,
the skew angle has to be estimated and corrected by in-
verse rotation of the document image. Following Baird’s
definition (1987), the skew angle of a document image I
is the orientation angle θ of its text baselines. It is posi-
tive when the image is rotated anti-clockwise, otherwise
it is negative. Contrary to some systems that can per-
form local skew angle estimation (Antonacopoulos 1997;
Yu et al. 1995), WISDOM++ can correctly manage only
documents with the same skew angle for all text lines.
The estimation θ̂ of the actual skew angle θ is obtained
as the composition of two functions: S(I), which returns
a sample region R of the document image I, and E(R),
which returns the estimation of the skew angle in the
sample region R. The selection of a sample region is pe-
culiar to WISDOM++ and has the advantage of reduc-
ing the computational cost of the estimation step, while
its main disadvantage is the possibility of errors in the
estimation of the dominant (i.e., the most frequent) skew
in documents with many local skews for text lines.
In order to select the sample region WISDOM++

computes both the horizontal projection profile H of the
document image and the average number of pixels per
row (avpx ). Then it extracts a set of regions from H:
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a region Ri is a sequence of adjacent rows in H , whose
height is greater than avpx/4 . In this way, only regions
with prominent peaks will be considered, since E(Ri) is
more likely to be close to the true skew angle θ. Each
region is classified as horizontal line, text, or image as
specified in the paper by Altamura et al. (1999). Since
the focus is on the estimation of the skew angle of text
regions, the system selects, if any, the text region Ri

with the maximum average density of black pixels per
row. Otherwise, the system returns the region, classified
as horizontal line or image, satisfying the following con-
ditions: its base is smaller than 310 pixels and it has the
maximum average density of black pixels per row1.

Once the sample region R has been selected, E(R) is
computed. Let Hθ be the horizontal projection profile of
R after a virtual rotation of an angle θ. The histogram
Hθ shows sharply rising peaks with a base equal to the
character height when text lines span horizontally, while
it presents smooth slopes and lower peaks when the skew
angle is large. This observation is mathematically cap-
tured by a real-valued function, A(θ) =

∑
j∈R H2

θ (j),
which has a global maximum at the correct skew an-
gle. Thus, finding the actual skew angle means locating
the global maximum value of A(θ). Since this measure is
not smooth enough for the application of gradient tech-
niques, the system adopts some peak-finding heuristics,
which is simpler than that proposed by Baird (1987).
Initially, it takes thirty-two samples of A(θ) for rotation
steps of 20 pixels2, thus only thirty-two rotations are
possible for steps of 0.46◦.. Then it selects the angle θ′
maximizing A(θ) and rotates the sample region at finer
steps (10 pixels), starting from θ′ − 30, until a peak is
found. The skew angle is finally estimated by comput-
ing the vertex of the parabola interpolating three points
around the peak in the space (θ, A(θ)) (see Fig. 1). The
estimated skew angle is used as a default value when
the user asks the system to rotate the document. The
user can repeat the loop “skew estimation – document
rotation” until satisfying results are obtained.
In the preprocessing phase the spread factor of the

document image is also computed. It is defined as the
ratio of the average distance between the regions Ri

(avdist) and the average height of the same regions
(avheight). In quite simple documents with few sparse
regions this ratio is greater than 1.0, while in complex
documents with closely written text regions the ratio is
lower than the unit. The spread factor is used to de-
fine some parameters of the segmentation algorithm. At
the end of the preprocessing phase, the resolution of the
document image is reduced from 300 to 75 dpi, which
is a reasonable trade-off between the accuracy and the
speed of the segmentation process. In this way, noisy
black specks on a white background are also filtered out.

1 When no full region satisfying these conditions exists, a
sub-region of exactly 310 pixel is selected.

2 For an A4-sized document image with 2,496 columns,
this correspond to rotations of an angle equal to arctan
(20/2496) ≈ 0.46◦. WISDOM++ can detect skews smaller
than ±7.2◦
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Fig. 1. An example of peak search performed by WIS-
DOM++. The original document image has been rotated by
−4◦
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Fig. 2. Adaptive threshold definition depending on the
spread factor

The size of the reduced bitmap for an A4-sized page is
about 70 kb.

3 Adaptive page segmentation
and block classification

WISDOM++ segments the reduced document image
into rectangular blocks by means of a variant of the
Run Length Smoothing Algorithm (RLSA) (Wong et al.
1982). The RLSA applies four operators to the document
image: (1) horizontal smoothing with a threshold Ch; (2)
vertical smoothing with a threshold Cv; (3) logical AND
of the two smoothed images; and (4) additional horizon-
tal smoothing with another threshold Ca. Although it
is conceptually simple, this algorithm requires scanning
the image four times. WISDOM++ implements a vari-
ant that scans the image only twice, with no additional
cost (Shih and Chen 1996). Furthermore, the smoothing
parameters Cv and Ca are adaptively defined depending
on the spread factor, while Ch is set to one-tenth of the
number of columns in the reduced bitmap (that is, 62)
(see Fig. 2).
The segmentation algorithm returns blocks that may

contain either textual or graphical information. In order
to facilitate subsequent document processing steps it is
important to classify these blocks according to content
type. The classes used in WISDOM++ are: text block,
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horizontal line, vertical line, picture (i.e., halftone im-
ages), and graphics (e.g., line drawings).
A method for the classification of blocks into text,

graphic/halftone image, horizontal line or vertical line
was proposed by Wong et al. (1982). It is based on four
features3: (1) the height of a block; (2) the eccentricity of
the rectangle surrounding the block; (3) the mean hori-
zontal length of the black runs of the original data within
each block; and (4) the ratio of the number of black pixels
to the area of the surrounding rectangle. Three textural
features proposed by Wang and Srihari (1989), namely
short-run emphasis, long-run emphasis and extra-long-
run emphasis, were proven to be useful to discriminate
between text blocks with large, medium-sized and small
letters. Both Wong et al. and Wang and Srihari use linear
discriminant functions as block classifiers, while Fisher et
al. (1990) apply a rule-based classification method using
only geometric features. A common aspect of all these
works is that they adopt a set of threshold values, which
do not automatically adjust for different types of docu-
ments.
In WISDOM++, the classification of blocks is per-

formed by means of a decision tree automatically built
from a set of training examples (blocks) of the five
classes. The choice of a “tree-based” method instead of
the most common generalized linear models is due to
its inherent flexibility, since decision trees can handle
complicated interactions among features and give easily
interpreted results. The numerical features used by the
system to describe each block are the following:

1. height : height of the reduced image block;
2. length: length of the reduced image block;
3. area: area of the reduced image block (height*length);
4. eccen: eccentricity of the reduced image block

(length/height);
5. blackpix : total number of black pixels in the reduced
image block;

6. bw trans: total number of black-white transitions in
all rows of the reduced image block;

7. pblack : percentage of black pixels in the reduced im-
age block (blackpix/area);

8. mean tr : average number of black pixels per black-
white transition (blackpix/bw trans);

9. F1 : short-run emphasis;
10. F2 : long-run emphasis;
11. F3 : extra-long-run emphasis4.

A well-known decision tree learning system is C4.5 by
Quinlan (1993). It is a batch learner, that is, it cannot
change the decision tree when some blocks are misclassi-
fied unless a new tree is generated from scratch using an
extended training set. However, to enable users to train
the system on-line when they are dissatisfied with the
classification made by a decision tree it is necessary to
apply an incremental learning strategy, as done by ITI
2.0 (Utgoff 1994). This system, which has been embed-
ded in WISDOM++, can operate in three different ways.

3 In Wong et al.’s work, only the first three features are
actually used by the block classifiers.

4 Computed using the following thresholds: T1=10 and
T2=20 (Wang and Srihari 1989).

In the batch mode it works like C4.5. In the normal oper-
ation mode it first updates the frequency counts associ-
ated to each node of the tree as soon as a new instance is
received. Then it restructures the decision tree according
to the updated frequency counts. In the error-correction
mode, frequency counts are updated only in the case
of misclassification of the new instance. The main dif-
ference between the two incremental modes is that the
normal operation mode guarantees the building of the
same decision tree independently of the order in which
the examples are presented, while the error-correction
mode does not.

4 Knowledge-based detection
of the layout structure

The result of the segmentation process is a list of clas-
sified blocks, corresponding to printed areas in the page
image5. Each block is described by a pair of coordinates,
namely top left-hand corner and bottom right-hand cor-
ner, and the class label. The number of blocks is gener-
ally less than a hundred; thus, a segmented page is cer-
tainly easier to manage than the original bitmap. How-
ever, this new representation is still too detailed for the
subsequent processing steps, which can work more effi-
ciently with representations at higher levels of abstrac-
tion.
In this case, abstraction is related to the perception of

document images. The perceptual organization process
that aims to detect structures among blocks is called the
layout analysis. The result is a hierarchy of abstract rep-
resentations of the document image and the geometric
(or layout) structure. The leaves of the layout tree (lowest
level of the abstraction hierarchy) are the blocks, while
the root represents the whole document. In multi-page
documents, the root represents a set of pages. A page
may group together several layout components, called
frames, which are rectangular areas of interest in the
document page image. An ideal layout analysis should
produce a set of frames, each of which can be associ-
ated with a distinct logical component, such as title and
author of a scientific paper. In practice, however, a sub-
optimal layout structure, in which it is still possible to
distinguish the logical meaning of distinct frames, should
be considered a good output of the layout analyzer.
The various approaches to the extraction of the lay-

out structure can be classified in two distinct dimensions:
(1) direction of construction of the layout tree (top-down
or bottom-up); and (2) amount of explicit knowledge
used during the layout analysis. As to the second di-
mension, Nagy, Kanai and Krishnamoorthy (1988) dis-
tinguish three levels of knowledge in the layout structure
of a document:

– Generic knowledge (e.g., type base lines of a word
are collinear).

5 Note that the assumption that printed areas are rectan-
gular encompasses the assumption that all text lines have no
skew. This explains the need to evaluate the page skew and
to rotate the image.
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– Class-specific knowledge (e.g., no text line is lateral
to a graphical object).

– Publication-specific knowledge (e.g., maximum type
size is 22 points).

They observe that knowledge used in bottom-up lay-
out analysis is necessarily different from that used for
top-down processing: it is much less document specific.
In addition, we note that knowledge used in top-down
approaches is typically derived from the relations be-
tween the geometric and the logical structures of specific
classes of documents. This is the case of page grammars
(Nagy et al. 1992) and geometric trees (Dengel and Barth
1988), which are used to segment document images and
simultaneously associate some layout components with
the logical structure. In WISDOM++ this class-specific
knowledge is solely required in the document classifi-
cation and understanding steps and it is automatically
learned from examples of documents, as explained in the
next section.
LEX is an example of a bottom-up layout analy-

sis system that exploits generic knowledge on west-style
typesetting conventions to group basic blocks together
into frames (Esposito et al. 1995). The layout analysis is
done in two steps:

1. A global analysis of the document image in order to
determine possible areas containing paragraphs, sec-
tions, columns, figures, and tables. This step is based
on an iterative process, in which the vertical and hori-
zontal histograms of text blocks are alternatively an-
alyzed to detect columns and sections/paragraphs,
respectively.

2. A local analysis of the document to group together
blocks which possibly fall within the same area. Three
perceptual criteria are considered in this step: prox-
imity
(e.g., adjacent components belonging to the same col-
umn/area are equally spaced), continuity (e.g., over-
lapping components), and similarity (e.g., compo-
nents of the same type, with an almost equal height).

Pairs of layout components that satisfy some of these
criteria may be grouped together. Each layout compo-
nent is associated with one of the following types: text,
horizontal line, vertical line, picture, graphic, and mixed.
When the constituent blocks of a logical component are
homogeneous the same type is inherited by the logical
component, otherwise the associated type is set tomixed.
The first Prolog version of LEX (Malerba et al. 1995)

had the advantage of a straightforward representation
and manipulation of declarative knowledge. In order to
improve the run time, a more recent C++ version has
been implemented and embedded in WISDOM++. In
Fig. 3) the various steps of the layout analysis process
are shown.

5 Document classification and understanding

While the layout structure associates the content of a
document with a hierarchy of layout objects, such as
blocks, frames, and pages, the logical structure of the

Fig. 3. A document image (upper-left) and the five levels of
its layout structure: basic blocks, lines, set of lines, frame1,
and frame2

document associates the content with a hierarchy of log-
ical objects, such as sender/receiver of a business letter,
title/authors of a scientific article, and so on. The prob-
lem of finding the logical structure of a document can be
reformulated as the problem of defining a mapping from
the layout structure into the logical one. In WISDOM++
this mapping is currently limited to the association of
a page with a document class (document classification)
and the association of page layout components with ba-
sic logical components (document understanding). The
mapping is built by matching the document description
with both models of the classes of documents and models
of the logical components of interest for each class.
Models are represented as rules. Typically such rules

are handcoded for particular classes of documents (Nagy
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et al. 1992), requiring fine-tuning and great human ef-
fort. In WISDOM++ rules are automatically generated
by means of machine learning algorithms that induce
them from a set of training examples, for which the fi-
nal user has already defined the correct class and has
specified the layout components with a logical meaning
(logical components) (Esposito et al. 1999). In the cur-
rent version of the system, the administrator has the re-
sponsibility of activating learning processes for different
training sets.
In order to apply machine learning techniques to in-

duce rules for layout-based document classification, it is
important to define a suitable representation of the lay-
out structure of training documents. In this work we con-
fine ourselves to representing the most abstract level of
the layout structure (frame2) and we deliberately ignore
other levels, as well as their composition hierarchy. We
prefer to describe both documents and rules in a first-
order language. In this language, unary function sym-
bols, called attributes, are used to describe properties of
a single layout component (e.g., height and length), while
binary predicate and function symbols, called relations,
are used to express spatial relationships among layout
components. An example of a page layout description,
automatically generated by WISDOM++ for the layout
shown in Fig. 3, is reported below:

part of(X1,X2), part of(X1,X3), . . . , part of(X1,X17),
width(X2)=290, width(X3)=94, . . . , width(X17)=104,
height(X2)=6, height(X3)=7, . . . , height(X17)=6,
type of(X2)=hor line, type of(X3)=text,
type of(X17)=text,
x pos center(X2)=168, x pos center(X3)=366, . . . ,
x pos center(X17)=290,
y pos center(X2)=27, y pos center(X3)=27, . . . ,
y pos center(X17)=783,
on top(X2,X4), on top(X3,X4), . . . , on top(X14,X15),
to right(X15,X16), to right(X2,X3), . . . ,
to right(X10,X11),
alignment(X2,X12)=only left col, . . . ,
alignment(X10,X11)=only middle row

where the constant X1 denotes the whole page, while
the remaining constants X2, X3, . . . X17 denote distinct
layout components at the frame2 level. It is noteworthy
that both symbolic and numeric attributes are used to
describe the page layout, thus requiring an extension of
the machine learning algorithm originally designed for
symbolic data alone. Indeed, some experimental results
of the document image understanding problem (Malerba
et al. 1997a) have led to the conclusion that mixed nu-
meric/symbolic descriptions are essential for generating
accurate models of logical structures. The following is
an example of a rule, generated by the current version
of the machine learning algorithm:

logic type(X)=running head ← y pos center(X)=18 . . .
32, on top(X,Y), on top(Y,Z)

which means that an object X is a running head if its
center is located in the upper part of the page (between
rows 18 and 32) and is above another object Y, which is,

in turn, above another object Z. A detailed description
of the main issues and experimentally validated solutions
for inductive learning of document classification and un-
derstanding models is reported in the paper by Esposito
et al. (2000).
Once the logical structure of the document has been

determined, WISDOM++ allows the user to set up the
text extraction process, by selecting the logical compo-
nents to which an OCR has to be applied. Finally, the
system generates an HTML/XML version of the original
document, as explained in the next section.

6 Transformation into HTML/XML formats

The simplest way to make processed documents accessi-
ble via the Web is to attach document images to HTML
pages, after having converted bitmaps into a format sup-
ported by most browsers (e.g., GIF or JPEG). How-
ever, this approach presents at least three disadvantages.
First, compressed raster images are still quite large and
their transfer can be unacceptably slow. Second, the orig-
inal document can only be viewed and not edited. Third,
in the case of multipage documents, pages can be pre-
sented only in a sequential order, thus missing the advan-
tages of a hypertext structure which supports document
browsing. Therefore, it is important to transform doc-
ument images into HTML/XML formats by aggregat-
ing all textual, graphical, layout and logical information
extracted in the document analysis and understanding
processes. Current commercial OCR technology is still
far from performing this transformation effectively. The
main reason is that OCR systems have insufficient in-
formation on the layout structure of documents and no
information on the logical structure. Since knowledge of
both layout and logical structures is actually available in
WISDOM++ at the end of the document analysis and
recognition process, it is possible to have qualitatively
better results in terms of presentation and conveyed in-
formation (see Fig. 4). Henceforth, only the transforma-
tion into XML format will be presented, since it encom-
passes the generation of documents in HTML format.

6.1 XML document structures

An XML document has both a logical and a physical
structure. The logical structure allows a document to be
divided into named units and sub-units, called elements.
The physical structure allows components of the docu-
ment, called entities, to be named and stored separately,
sometimes in other data files, so that information can
be re-used, and non-XML data (e.g., images) can be in-
cluded by reference. An XML processor is used to man-
age entities and combine them in a single data stream,
both for validation by a parser and for accessing by the
main application (see Fig. 5).
The most significant feature of XML is the concept

of Document Type Definition (DTD), which provides a
formal set of rules to define a logical document struc-
ture, defines the elements that may be used, and dictates
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Affiliation 

 Body 

 Body 

Fig. 4. Transformation of a document into HTML format as per-
formed by a commercial OCR (left), and the transformation into
XML format as performed by WISDOM++ (right). WISDOM++
renders a version of the document similar in appearance and con-
tent to the original document. Moreover, data on the affiliation of
authors is not intermixed with the introduction text. WISDOM++
has associated the document with a style sheet specific for the class
‘Transactions on Pattern Analysis and Recognition’, which has been
recognized during the document classification step. Although it is not
visible, information on the logical structure of the document (running
head, title, author(s), affiliation, abstract, index terms, and so on) is
also reported in the XML file

where they may be applied in relation to each other. The
declarations that comprise the DTD may be totally or
partially stored at the top of each document that must
conform to these rules (internal DTD), or may be alter-
natively stored in a separate data file (external DTD),
which is referred to by a special instruction at the top
of each document. WISDOM++ adopts the latter solu-
tion, which generates a distinct DTD for each document
class. For instance, the DTD generated for any docu-
ment of the class “Transactions on Pattern Analysis and
Machine Intelligence” will be the following:
<!-- standard DTD file for tpami class -->
<!ELEMENT tpami
(abstract|affiliation|author|body|index-
term|page-number|running-head|title|undefined)*>
<!ELEMENT abstract (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT body (#PCDATA)>
<!ELEMENT index-term (#PCDATA)>
<!ELEMENT page-number (#PCDATA)>
<!ELEMENT running-head (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT undefined (#PCDATA)>

Each declaration conforms to the markup declaration
format <!. . . . . . >. The keyword ELEMENT introduces an

element declaration (in this case abstract, affiliation, un-
defined6) and specifies its allowed content. An element
may have no content at all, may have a content of only
text, of only child elements, or of a mixture of elements
and text. In the example above, the content of the ele-
ment tpami is a child element, which is structured, while
all remaining elements can contain only text (Parsable
Character Data, PCDATA). An attribute may be associ-
ated with a particular element to provide refined infor-
mation on an element. Examples of attributes are the
font size and the alignment. All the attributes are de-
clared separately from the element, but are usually de-
clared together in the attribute list declaration. In WIS-
DOM++ the elements have no attribute, since informa-
tion on font size, font weight, and so on is reported in a
separate style sheet file (.css). It is also noteworthy that
the DTD generated by WISDOM++ has no definition
of elements, since our main goal is not to represent the
layout structure explicitly, but to render the document
similar in appearance to the original document, which
can be achieved by means of XSL specifications, as ex-
plained later. In this way files to be transmitted through

6 The element undefined refers to all those logical compo-
nents of no specific interest for the application
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<running-head> 
IEEE TRANSACTIONS ON 
PATTERN ANALYSIS AND 
MACHINE INTELLIGENCE. 
VOL. 18, NO. 1, JANUARY 1996 
</running-head> 
… 

Running head
entity Running head

element 

Fig. 5. Combination of the logical and physical structures
in a single data stream rendered by an XML-enabled web
browser

the Web are generally smaller, since they do not con-
tain information on the hundreds of components in the
document layout structure.
Once the DTD has been defined an instance of that

document type can be generated and stored in an .xml
file by respecting constraints defined by the set of rules
in the DTD. An example of an .xml file, generated for
the document in Fig. 3, is as follows:

<?xml-stylesheet href="tpami1.XSL"
type="text/xsl"?>
<!DOCTYPE tpami SYSTEM "tpami.DTD">
<tpami>
<running-head ID="id0"><paragraph>IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE
INTELLIGENCE, VOL.
</paragraph></running-head>
<running-head ID="id1"><paragraph>18, NO.1,
JANUARY 1996
</paragraph></running-head>
<title><paragraph>An Active</paragraph>
<paragraph>
Testing Model for Tracking Roads</paragraph>
<paragraph>
in Satellite Images
</paragraph></title>
<author><paragraph>Donald Geman and Bruno
Jedynak
</paragraph></author>
<abstract ID="id4"><paragraph>Abstract-We
present a new
approach for tracking roads from

satellite images, and thereby illustrate a
general computational
strategy (∼ctive testing∼) for tracking 1 0
structures and otner
recognition tasks in computer vision. Our
approach is
. . .

</paragraph></body>
</tpami>

The first row specifies the name of the style sheet
file (with extension .xsl), while the second row defines
the DTD associated to the document class (file with
extension .DTD). Text extracted with the OCR is in-
termixed with tags that define its logical structure (e.g.,
<running-head>, <abstract> and so on). The tag
<paragraph> is used to mark lines returned by the OCR,
information which is useful only for rendering purposes.
This tag is not declared in the DTD since it is not con-
sidered a logical element from the user’s viewpoint. The
number of logical elements in the document instance cor-
responds to the number of frame2 layout components to
which the OCR has been applied. The element attribute
ID is used to identify different instances of logical ele-
ments in the document. This is important for defining
the proper rendering of each instance.
The XML specification includes a facility for physi-

cally isolating and separately storing any part of a doc-
ument. Each unit of information is called an entity and
each entity is assigned a name, so that it can be iden-
tified. The only entity to which an entity name is not
assigned is the document entity . It is stored in a data file
that is considered as representing the entire document.
In simple cases the document entity may be the only
entity (main program without sub-program), in more
complex cases the document entity is used to position
the call of other entities (main program with only sub-
programs). A declaration <!ENTITY . . . > is required to
announce the existence of an entity. No such declara-
tion is reported in XML documents generated by WIS-
DOM++, since they contain only one entity (document
entity).
The content of an XML element, such as an abstract

or a paragraph, has no explicit text style or format. Since
XML language is not concerned with visualization as-
pects, it is necessary to specify the element rendering in
a different language. XSL (eXtensible Style Language)
is a language used for expressing style sheets. An XSL
style sheet specifies the presentation of a class of XML
documents by describing how an instance of the class is
transformed into an XML document that uses the for-
matting vocabulary. The reference to an external style
sheet is reported in the first row of the XML file pro-
duced by WISDOM++:

<?xml-stylesheet href="tpami1.XSL"
type="text/xsl"?>

An XSL style sheet processor accepts a document or
data in XML and an XSL style sheet and produces the
presentation of the XML source content that was in-
tended by the designer of that style sheet. The presenta-
tion process involves two distinct steps: the transforma-
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tion of the original XML source file (tree construction)
and the interpretation of the transformed file to produce
formatted results suitable for presentation (formatting).
The process of formatting is performed by the format-
ter, which, in our case, is a rendering engine inside a
browser. An example of a style sheet file generated for
the document in Fig. 3, is as follows:

<?xml version=’1.0’?>
<xsl:stylesheet
xmlns:xsl=’http://www.w3.org/TR/WD-xsl’>
<xsl:template match=’/’>
<HTML>
<HEAD>
<TITLE>An Active Testing Model for Tracking Roads
in Satellite Images</TITLE>
<LINK rel="stylesheet" href="tpami.css"></LINK>
</HEAD>
<BODY TEXT="BLACK" BGCOLOR="WHITE">
<TABLE WIDTH=’100%’ BORDER=’0’>
<TR>
<TD WIDTH=’54%’ VALIGN=’TOP’
CLASS="running-head"><BR/>
<xsl:for-each
select="tpami/running-head[@ID=’id0’]/paragraph">
<xsl:if test=’TAB’> &#160;&#160;&#160; </xsl:if>
</xsl:for-each>
</TD>
. . .
</HTML>
</xsl:template>
</xsl:stylesheet>

The transformation is based on template rules (tag
<xsl:template>), each rule specifying how an XML ele-
ment should be transformed. In the above example, only
one rule is defined to transform the whole XML file into
an HTML document, by adding graphical components
and by arranging elements into tables as well as lines
into table entries. Following W3C recommendations, the
selection of font, font-size, and alignment is not speci-
fied in the XSL file, but in the Cascading Style Sheet file
(.css), which is unique for each class of documents. It
is noteworthy that WISDOM++ does not rely on style
information extracted by the OCR, but exploits the re-
sult of the classification process to associate a .css file
to an HTML/XML document. For instance, the CSS file
associated to the document in Fig. 3 will be:

TD {font: 7pt Arial; text-align: justify;}
TD.title {font-size: 19pt; text-align:
center;}
TD.author {font-size: 10pt; text-align:
center;}
TD.running-head {font-size: 7pt; text-align:
center;}
TD.abstract {font-size: 7pt; text-align:
left;}
TD.affiliation {font: 7pt Times New Roman;
font-posture: italic; }
TD.index-term {font-size: 7pt;}
TD.body {font: 8pt Times New Roman;}
TD.page-number {font-size: 7pt;}
BR {font-size: 3pt;}

WISDOM++ helps users to define a CSS file for each
class of documents.

6.2 Generation of the HTML/XML files

The previous section illustrates the distribution into dif-
ferent files of several pieces of information extracted by
WISDOM++, namely the layout and logical structures,
the pictorial content of some graphical layout compo-
nents, the textual content as well as the text format of
some logical components. However, the document con-
version into structured formats (HTML/XML) is not
straightforward, since a number of factors should be con-
sidered in order to render the converted document as
similar as possible to the original document image.
The system makes use of document layout informa-

tion for conversion into structured formats. In particu-
lar, frame2 and lines are the only two levels of the layout
structure that are actually useful. The former defines the
layout to be reproduced in a Web document, while the
latter helps to format the text associated to some frame2
components. Layout-based conversion into HTML/XML
format is a two-phase process:

1. Creation of a hierarchy of HTML tables that accu-
rately represent the highest level of the layout struc-
ture.

2. Formatting the text associated to some frame2 com-
ponents and linking the bitmaps extracted for the
others.

The first step is indispensable, since neither HTML
not XML allow coordinate-based positioning of text and
images on the screen. The page layout is rendered by
means of nested tables, which are generated according
to the following procedure:

convert column(column)
Determine rows in the column and generate an HTML ta-
ble with as many rows
For each row with multiple frame2 components:

Determine columns in the row and generate an HTML
table with as many columns
For each column c

convert column(c)

This procedure performs recursive cuts of the hori-
zontal and vertical histograms, computed on the basis
of frame2 components. At the first call the layout of the
whole document is passed. For the document in Fig. 3
this procedure determines a first row with two cells, one
for the running head and one for the page number, which
will be described by the following fragment of HTML
code:

<TABLE WIDTH=’100%’ BORDER=’0’>
<TR>
<TD WIDTH=’54%’ VALIGN=’TOP’
CLASS="running-head"><BR>
<CENTER>IEEE TRANSACTIONS ON PATTERN ANALYSIS
AND MACHINE INTELLIGENCE, VOL.</CENTER>
</TD>
<TD WIDTH=’1%’></TD>
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<TD WIDTH=’17%’ VALIGN=’TOP’
CLASS="running-head"><BR>
<CENTER>18, NO.1, JANUARY 1996</CENTER>
</TD>

The attribute WIDTH denotes the relative width of a
table (row/column) and it is computed to respect the
original size of frame2 components. The content of table
entries (tag <TD>) can be a text, a figure or a horizon-
tal/vertical line. For instance, the seventh row of the
table generated for the document in Fig. 3 contains the
horizontal line that separates the index term from the
introduction:

<TABLE WIDTH=’100%’ BORDER=’0’>
<TR>
<TD WIDTH=’29%’></TD>
<TD WIDTH=’18%’ VALIGN=’TOP’><BR><HR></TD> left
horizontal line
<TD WIDTH=’2%’></TD>
<TD WIDTH=’1%’ VALIGN=’TOP’><BR>
<IMG SRC="tpami1j8.jpg"></TD> diamond image
<TD WIDTH=’1%’></TD>
<TD WIDTH=’18%’ VALIGN=’TOP’><BR><HR></TD>
right horizontal line
<TD WIDTH=’31%’></TD>
</TR>
</TABLE>

Once the hierarchy of HTML tables has been built
it is necessary to format each table entry with textual
content. This task is performed by the OCR when the
output is already saved in HTML format, while it is done
by WISDOM++ when the output is plain ASCII text.
In the latter case the straightforward copy of the ASCII
text would result in a loss of the original formatting of
the document (e.g., arrangement of text in paragraphs,
indentation, and centering). In order to recover the origi-
nal formatting it is necessary to match text lines read by
the OCR with lines in the layout structure (see Fig. 6).
Generally, only a partial matching can be found, due to
possible errors in the segmentation and layout analysis
made by either WISDOM++ or the OCR. For instance,
there is only one line for the section title in Fig. 6, while
the OCR returns two text lines (each line ending with
¶). On the contrary, the first two lines of the initial para-
graph are merged during the segmentation process, while
the OCR returns two text lines. In WISDOM++ the op-
timal matching is found by means of a heuristic search.
Additional heuristics are also used to decide when a text
line should be indented or centered, as well as when a
carriage return (¶) detected by the OCR should be trans-
formed into a break tag (<BR>) in HTML.

7 Benchmarking of WISDOM++

In order to assess the absolute performance of the docu-
ment analysis system, we will follow the evaluation
method proposed by Märgner et al. (1997). Attention is
focused on the document analysis functions alone, since
an assessment of the system performance for the docu-
ment classification and understanding steps is out of the

scope of this paper (see Esposito et al. (2000) for more
details).
By considering WISDOM++ as a chain of modules,

we intend to evaluate the performance of some of them,
namely the skew evaluation module and the block classi-
fication module. A set of 112 real, single-page documents
have been considered as input data. The set is the same
as that used in a previous study of the document clas-
sification and understanding problems (Esposito et al.
1999). The documents are distributed as follows: thirty
are the first pages of articles appearing in the proceed-
ings of the International Symposium on Methodologies
for Intelligent Systems (ISMIS94)7, twenty-eight are the
first pages of articles published in the proceedings of
the 12th International Conference on Machine Learn-
ing (ICML95), thirty-four are the first page of articles
published in the IEEE Transactions on Pattern Analy-
sis and Machine Intelligence (TPAMI)8, and twenty are
documents of different types or published in other pro-
ceedings, transactions, and journals (Reject). The text
is organized into one column for the first class of doc-
uments and into two columns for the second and third
classes. No uniform layout can be detected for the doc-
uments in the fourth class. The documents may contain
formulae, drawings, halftone images and other graphical
elements (e.g., vertical/horizontal lines).
Benchmarking of the deskew algorithm is performed

in two different ways. First, the optimal output (ground
truth) is determined by a human expert, who decides
which is the right skew angle of the scanned document
image. This real assessment may contain some impre-
cision, that we tried to reduce by providing the expert
with two effective tools in the interface: zooming func-
tions and a straight-edge. The latter aims at an error-
free ideal assessment through artificial rotations of the
document image for some known angles. In both cases,
the evaluation function computes the error made with
respect to the real/ideal assessment value.
The results on the real assessment are reported in

Table 1, where all measurements are absolute values of
angles expressed in degrees. The following observations
should be made. Documents have been scanned by a
careful user, who placed documents on the flat surface
of a scanner with a skew of less than three degrees. The
smallest non-null skew angle that can be detected for A4
documents is 0.023◦, which corresponds to a tilt of one
pixel in a bitmap with 2,496 columns. For single-column
documents (ISMIS94) the error made by WISDOM++
is two pixels on average, while for documents organized
in two columns (ICML95 and TPAMI) it is about nine
pixels on average.
Document images correctly rotated by the expert are

used in the second benchmarking of the deskew algo-
rithm. Each of them is rotated at various degrees (i.e.,
±0.5◦, ±1.0◦, ±1.5◦, ±2.0◦, ±3.0◦, ±4.0◦, ±5.0◦, ±6.0◦,
±7.0◦), using the rotation algorithm implemented in

7 Published by Springer-Verlag in the series Lecture Notes
in Artificial Intelligence, Vol. 869

8 Period January-June 1996
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1 INTRODuCTION¶ 
¶ 
XAT E present a new algorithm for tracking major roads¶ 
VY from panchromatic SPOT satellite imagery with a¶ 
ground resolution of 10 meters. This is the immediate goal of¶ 
this work, and our approach will be demonstrated on SPOT¶ 
images of size 6,000 x 8,000, representing a 60km x 80km¶ 
square on the ground, in this case in southern France. At¶ 
the same time, the tracking algorithm illustrates a very¶ 
general approach ("active testing") to classification and¶ 
recognition problems, which is motivated by the proposi-¶ 
tion that one can make fast and accurate decisions "simply¶ 
by" asking the "right" questions in the "right" order, like in¶ 
parlor games such as "Twenty Questions." We have also¶ 
applied this method to recognizing other tw~ dimensional, ¶ 
deformable shapes, such as handwritten numerals appear-¶ 
ing in photographs of zip codes. A preliminary version of¶ 
the road and numeral studies appeared in [16]; a full report¶ 
of the numeral work will appear elsewhere. ¶ 
 In the general classification problem there is finite list of¶ 
possible "hypotheses" or "states of nature" and an initial¶ 
(or "prior") distribution over hypotheses which reflects the¶ 
initial uncertainty about which one is true. We wish to d~¶ 
termine X, the true hypothesis, on the basis of various¶ 
"questions" or "tests." (In our case, the hypotheses are the¶ 

Fig. 6. Lines detected in a layout
structure (left) and text lines ex-
tracted by the OCR (right)

Table 1. Errors made with respect to the real assessment
defined by an expert

Ismis Tpami Icml Reject
Average error 0,0470 0,2166 0,2045 0,1120
Average Real Skew 0,3115 0,4530 0,5130 0,3659
Standard Deviation 0,2827 0,3489 0,5121 0,3896
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Fig. 7. Average absolute error of the skew angle for the four
classes of documents

WISDOM++. The absolute errors averaged in all docu-
ments of a class are reported in Fig. 7.
A comparison with other published results is not

easy. A similar benchmarking was performed by Smith
(1995), whose best results seem to be similar to ours.
Our experimental design allows us to observe that the
skew estimation procedure gives a good performance for
single-column documents, but is not always reliable for
documents organized in two or more columns. This limit
is more evident with clockwise rotations, and is generally
due to the difficulty in selecting a good sample region.
Moreover, the error generally increases with the size of
the skew angle, so that for a relatively large tilt it would
be necessary to repeat the deskew process more than
once. As to the time performance, which is a critical fac-
tor for a real-time system, it is always lower than 0.41 s
for a Pentium PC 200MMX.
In order to test the performance of the block classi-

fier, the set of documents has been split into a training

Table 2. Characteristics of the learned decision trees

Size No. No. No. incorporated
Kb Nodes leaves examples

Batch 24,320 229 114 9,429
Pure Error-
correction 982 159 79 277
Mixed 13,150 235 117 4,545+125

set (70%) and a test set (30%), according to a strati-
fied random sampling. The number of training blocks is
9,429, while the number of test blocks is 3,176. Three ex-
periments have been organized. ITI 2.0 has been trained
in the batch mode in the first experiment, pure error-
correction mode in the second, and mixed incremental-
/error-correction mode in the third (incremental mode
for the first 4,545 examples and error-correction mode
for the remaining 4,884).
The main characteristics of the learned trees are re-

ported in Table 2, where the last column refers to the
number of examples stored in the nodes of the induced
trees.
The decision tree built in the batch mode takes about

24 Mb, since all instances have to be stored, while the
decision tree obtained in the error-correction mode re-
quires only 982 kb. The total number of instances incor-
porated in the third experiment is 4,670, where 4,545 are
the training examples used in the first incremental step,
while the remaining 125 have been incorporated in the
subsequent error-correction step. Nevertheless, this dif-
ference in tree size corresponds to a very small difference
in predictive accuracy estimated on the independent test
set (see Table 3). This justifies the use of the decision
tree, developed according to the error-correction opera-
tion mode, in many practical situations.
The learned trees are not shown in this paper because

they are too large. We limit ourselves to reporting that
the set of features actually used in the decision tree built
by the pure error-correction procedure does not contain
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Table 3. Predictive accuracy of the learned decision trees

ISMIS ICML
94 95 TPAMI Reject Total

Batch 95.78 97.74 98.26 97.00 97.48
Pure Error-
correction 97.05 98.39 98.01 95.06 97.45
Mixed 95.99 97.63 98.18 97.35 97.51

two features, namely the width of the block and F3. This
omission is probably due to the documents considered in
this benchmarking, which have few occurrences of large
text blocks better identified by the feature emphasizing
long runs.
The benchmarking of the layout analysis process is

more elaborate, since the extracted layout depends on
a number of subsequent processing steps, namely adap-
tive segmentation, global layout analysis, and detection
of lines, set of lines, frame1 components and frame2 com-
ponents. In order to evaluate the result of one of these
processing steps, it is necessary to provide the system
with the ideal (or at least, the best) input data and to
define the ground truth, that is, the ideal output of that
step.
In the evaluation of the adaptive segmentation al-

gorithm the ideal input is a deskewed document, while
we defined as ground truth a set of blocks such that: (1)
each block encloses homogeneous data (single characters,
words or text lines of a column, horizontal/vertical lines,
images, and graphics); (2) no block encloses pure noise,
such as inkspots. Experimental results on the set of 112
documents are reported in Table 4.
Most of the errors are due to “noisy” blocks. A small

percentage of the error rate is due to large blocks that
group several text lines (i.e., the threshold Cv is high)
or text lines of adjacent columns (i.e., the threshold Ca

is high). It is noteworthy that changes made to both Cv

and Ca do not entail a total recovery of all errors.
Experimental results for the global layout analysis

are reported in Tables 5 and 6. They refer to errors ob-
served in the detection of columns and sections, respec-
tively. In this case the ideal input is the corrected result
of the segmentation algorithm.
The ground truth defined for the line detection step

is based on the following criteria: (1) each line in the lay-
out structure should include a text line in the document;
(2) contiguous horizontal and vertical lines extracted by
the segmentation algorithm should be merged together.
Experimental results are given in Table 7. Most of the er-
rors are due to both block misclassification and mistakes
in the global layout analysis. They have been corrected
by changing the block classification or the segmentation
thresholds Cv and Ca.
The ground truth defined for the detection step of

the set-of-lines is based on the following criterion: each
set-of-lines should include justified text lines of the same
paragraph. Experimental results are reported in Table 8.
In addition, in this case, errors are caused by block mis-
classification and erroneous global layout analysis.

The ground truth defined for the frame1 detection
step is based on the following criteria: (1) a block in-
cludes a set of centered text lines concerning the same
logical component (title, authors, etc.); (2) a block in-
cludes a set of text lines aligned by the left (right) col-
umn, which concern the same logical component (ab-
stract, affiliation, footnotes, etc.); (3) a block includes a
set of text lines in a paragraph; and (4) a block includes
a single text line regarding a page number or a section
title. Experimental results are reported in Table 9.
Finally, the ground truth at the frame2 level is the

ideal decomposition of a page into layout components,
such that each of them can be associated to at most one
logical label and the conditions reported for frame1 are
satisfied. Experimental results are reported in Table 10.
These experimental results provide a quantitative

evaluation of the correctness of individual steps in the
document image analysis. However, errors may accumu-
late at each processing step, as shown in Fig. 8. In this
example, an error in the detection of sections generates
an erroneous grouping at the level of lines, that in turn
affects the generation of frame2 components. The final
effect is that both the abstract and the body of the paper
are grouped together and the rules for document image
understanding cannot correctly map the layout struc-
ture into the logical structure. Figure 8 also illustrates
some examples of noisy blocks erroneously detected by
the segmentation algorithm and carried forward up to
the frame2 level. In both cases, user intervention on the
extracted layout is required in order to recover the cor-
rect layout structure.

8 Conclusions

In this paper a novel document processing system has
been presented. The system is complete and effectively
supports the transformation of printed documents into
HTML/XML format. It exploits the layout structure ex-
tracted in the layout analysis step, as well as the re-
sult of the various classifiers for blocks, documents, and
logical components automatically generated by symbolic
machine learning tools. A benchmarking of some pro-
cessing steps has also been reported. In particular, the
deskew algorithm, which operates in two steps, gives a
good performance for single column documents, while
there is still a margin for improvement in documents
with a more complex layout structure. Deskewed docu-
ments are segmented by means of a fast RLSA with an
adaptive parameter definition. The average percentage
of errors observed in the benchmarking of the adaptive
segmentation algorithm is relatively small and without
serious consequences for the subsequent layout analysis
steps. A high predictive accuracy has been observed for
the block classifier, which is a decision tree automatically
induced from a set of training examples. More abstract
layout components are found by means of a bottom-up,
knowledge-based layout analysis. The promising results
reported in the benchmarking for the highest level in the
layout structure empirically support the idea of using it
as the basis for document classification, document under-
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Table 4. Benchmarking of the adaptive segmentation algorithm

No. No. Perc. No. blocks No. errors Perc. errors
Class blocks errors errors after correction after correction after correction
Icml 3931 135 3.4 3691 14 0.3
Tpami 4477 198 4.4 4349 48 1.1
Ismis 1677 171 10.2 1485 4 0.3
Reject 2520 159 6.3 1654 15 0.9
Total 12605 663 5.3 11179 81 0.7

Table 5. Benchmarking of the global layout analysis process: column detection

No. No. Perc. No. columns No. errors Perc. errors
Class columns errors errors after correction after correction after correction
Icml 64 7 10.9 61 4 6.5
Tpami 77 8 10.4 72 5 6.9
Ismis 31 2 6.4 30 1 3.3
Reject 35 7 20 32 5 15.6
Total 207 24 11.6 195 15 7.7

Table 6. Benchmarking of the global layout analysis process: section detection

No. No. Perc. No. sections No. errors Perc. errors
Class sections errors errors after correction after correction after correction
Icml 398 8 2 396 6 1.5
Tpami 544 26 4.8 538 20 3.7
Ismis 244 4 1.6 240 3 1.2
Reject 227 20 8.8 223 18 8.1
Total 1413 58 4.1 1397 47 3.4

Table 7. Benchmarking of the line detection step

No. No. Perc. No. lines No. errors Perc. errors
Class lines errors errors after correction after correction after correction
Icml 2421 26 1.1 2409 14 0.6
Tpami 2914 66 2.3 2873 42 1.4
Ismis 1195 8 0.7 1191 1 0.1
Reject 1214 23 1.9 1214 20 1.6
Total 7744 123 1.6 7687 77 1.0

Table 8. Benchmarking of the set-of-line detection step

No. No. Perc. No. set-of-lines No. errors Perc. errors
Class set-of-lines errors errors after correction after correction after correction
Icml 708 23 3.2 693 11 1.6
Tpami 1527 30 2.0 1494 18 1.2
Ismis 507 8 1.6 500 3 0.6
Reject 728 23 3.2 702 8 1.1
Total 3470 84 2.4 3389 40 1.2

Table 9. Benchmarking of the frame1 detection step

No. No. Perc. No. frames No. errors Perc. errors
Class frames errors errors after correction after correction after correction
Icml 408 12 2.9 402 6 1.5
Tpami 728 25 3.4 695 12 1.7
Ismis 265 12 4.5 258 1 0.3
Reject 351 20 5.7 339 9 2.7
Total 1752 69 3.9 1694 28 1.7
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Table 10. Benchmarking of the frame2 detection step

No. No. Perc. No. frames No. errors Perc. errors
Class frames errors errors after correction after correction after correction
Icml 316 27 8.5 310 17 5.5
Tpami 556 24 4.3 531 6 1.1
Ismis 181 10 5.5 184 2 1.1
Reject 236 24 10.2 229 10 4.4
Total 1289 85 6.6 1254 35 2.8

Erroneous section crossing two columns 

Sections 
Noisy 
blocks 

Abstract and body are grouped together  

Noisy 
frames 

Fig. 8. Original document of the class ICML95 (left); basic blocks extracted by the segmentation algorithm and sections
detected by the global layout analysis (center); final frame2 level (right)

standing, and transformation into HTML/XML format.
Currently, we are investigating the possibility of inducing
class-specific knowledge to be used in the global analysis
process. By correcting the results of the global analysis
with either splitting or grouping operations it is possible
to generate a set of training examples for a learning sys-
tem that can automatically induce class-specific global
analysis rules. Moreover, we plan to extend the hyper-
text structure of the generated HTML/XML documents
by creating indexes and adding links to bibliographic ref-
erences.
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