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Abstract. Induction of recursive theoriesin the normal ILP setting is a complex
task because of the non-monotonicity of the consistency property. In this paper
we propose computational solutions to some relevant issues raised by the
multiple predicate learning problem. A separate-and-parallel-conquer search
strategy is adopted to interleave the learning of clauses supplying predicates
with mutually recursive definitions. A novel generality order to be imposed to
the search space of clauses is investigated in order to cope with recursion in a
more suitable way. The consistency recovery is performed by reformulating the
current theory and by applying a layering technique based on the collapsed
dependency graph. The proposed approach has been implemented in the ILP
system ATRE and tested in the specific context of the document understanding
problem within the WISDOM project. Experimental results are discussed and
future directions are drawn.

1 Introduction

Inductive learning of recursive logical theories is equivalent to learning multiple
predicate definitions from a set of examples. De Raedt et al. [9] have showed that
learning multiple predicates is more difficult than learning a single predicate. In fact,
the former task is not limited to the generation of several independent predicate
definitions, but involves the discovery of concept dependencies. A wrong hypothesis
on concept dependencies may significantly affect the learning results. Moreover, the
ordering typically used in inductive logic programming (ILP), namely 8-subsumption
[26], is not sufficient to guarantee the completeness and consistency of learned
definitions with respect to logical entailment.

The main problems raised by multiple/recursive predicate learning can be
explained in terms of an important property of the normal ILP problem setting:
Whenever two individual clauses are consistent on the data, their conjunction need
not to be consistent on the same data [11]. As a consequence, clauses supplying
predicates with multiple/recursive definitions should not be learned individually but,
in principle, they should be generated al together.

In order to overcome these problems, it has been proposed to work on a weak
setting of ILP [14], in which the monotonicity property is satisfied: Whenever two
individual clauses are valid on the data, their conjunction will also be valid on the
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data. In this setting, clauses can be investigated independently of each other since
their interactions are no longer important [10]. On the other hand, the weak setting
produces properties of examples instead of rules generating examples. This kind of
hypotheses cannot always be used for predicting the truth values of facts. When we
are interested in predictions, then the normal ILP setting is more appropriate.

Several studies on the problem of learning restricted forms of recursive theoriesin
the normal I1LP setting have been presented in the literature. Cohen [7] proves positive
and negative results on the pac-learnability of several classes of logic theories that are
allowed to include a recursive clause. Cameron-Jones and Quinlan [5] investigate a
heuristic method for preventing infinite recursion in single predicate definitions with
the system FOIL. De Raedt et al. [9] propose an agorithm, named MPL, that
performs a greedy hill-climbing search for learning multiple predicate definitions.
Giordana et al. [16] define a bottom-up learning algorithm, called RTL, that first
learns a hierarchical (i.e., non-recursive) theory T which is complete and consistent,
and then tries to synthesize a simple recursive theory from T. Aha et al. [1] have
developed a system called CRUSTACEAN which is able to learn recursive
definitions consisting of one unit clause and a two-literals recursive clause. Bostrom
[3] proposes an algorithm that, under some assumptions, correctly specializes a given
recursive theory with respect to positive and negative examples. ldestam-Almquist
[17] suggests a technique to efficiently learn recursive definitions including one base
clause and one tail recursive clause from a random sample of examples. An iterative
bootstrap induction method for learning recursive predicate definitions has been
studied by Jorge and Brazdil [18]. Finally, Mofizur and Numao [23] adopt a top-down
approach to learning recursive programs with only one recursive clause. A thorough
overview of achievements in the inductive synthesis of recursive logic programs can
be found in [15].

In this paper, a new approach to the problem of learning multiple dependent
concepts is proposed. It differs from De Raedt et al.’s approach in three aspects: the
learning strategy, the generalization model, and the strategy to recover the consistency
property of the learned theory when a new clause is added. These ideas have been
implemented in the learning system ATRE [21] and tested in the specific context of
the document understanding problem within the WISDOM project. In fact, the rules
induced by ATRE are used by the document analysis and recognition system
WISDOM++ [13] in order to recognize semantically relevant layout components (also
called logical components) in documents being processed.

The paper is organized as follows. Section 2 introduces the issues related to the
induction of recursive logical theories. Section 3 illustrates the learning strategy
adopted by ATRE. Section 4 is devoted to the generalization model whose
implementation is also sketched. A solution to the problem of recovering non-
monotonic theories is proposed in Section 5. In Section 6 the application of ATRE to
the document understanding problem and experimental results obtained on a set of
real-world multi-page documents are described. Finally, in Section 7 our conclusions
aredrawn.
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2 Recursive Theories: Learning | ssues

Henceforth, the term logical theory will denote a set of definite clauses. Every logical
theory T can be associated with a directed graph yT)=<N,E>, caled the dependency
graph of T, in which (i) each predicate of Tisanodein N and (ii) thereisan arcin E
directed from anode a to anode b iff there existsa clause Cin T such that aand b are
the predicates of a positive literal occurring in the head and in the body of C,
respectively.

A dependency graph allows to represent the predicate dependencies of T, where a
predicate dependency is defined as follows:

Definition 1 (predicate dependency [8]). A predicate p depends on a predicate qin a
theory T iff (i) there existsaclause C for pin T such that g occurs in the body of C; or
(ii) there exists a clause C for p in T with some predicate r in the body of C that
depends on q.

It is straightforward to notice that the direct (i) and indirect (ii) predicate
dependencies of T are represented as arcs and paths respectively in (T). The
correspondence may be highlighted by reformulating the problem from an algebraic
point of view. Let 7(T) be the set of predicates occurring in the logical theory T. The
direct (i) predicate dependenciesin T may be mathematically depicted as instances of
abinary relation on 7(T), namely R, ,[1n(T)* (T). The binary relation R, for predicate
dependencies is the transitive closure of R,,. Given that each binary relation can be
associated with a directed graph, the graph corresponding to R, is just the
dependency graph YT)=<m(T),R,,>.

Definition 2 (recursive theory). A logical theory T is recursive if the dependency
graph YT) contains at |east one cycle.

In simple recursive theories all cyclesin the dependency graph go from a predicate
p into p itself, that is simple recursive theories may contain recursive clauses, but
cannot express mutual recursion. An example of dependency graph for a recursive
theory isgivenin Fig. 1.

odd

odd(succ(X)) - even(X) »/j
even(succ(X)) «— odd(X) even
even(X) « zero(X) /

Zero

Fig. 1. A recursive theory and its corresponding dependency graph for the predicates even and
odd.

Most studies on the problem of induction of recursive theories have been
concentrated on learning a smple recursive predicate definition [5, 17, 18, 23]. In this
case, the main issue is how to guarantee that learned definitions are intensionally
complete and consistent. Learning simple recursive theories is more complicated,
since it is necessary to discover the right order in which predicates should be learned
[16], that is the dependency graph of the theory. Once such order has been
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determined, possibly using statistical techniques, the problem can be boiled down to
learning single predicate definitions [20]. The learning problem becomes harder for
recursive theories, because the learning of one (possibly recursive) predicate
definition should be interleaved with the learning of the other ones. One way to build
such interleaving is by parallel learning clauses for different predicates. This is,
indeed, the strategy adopted by ATRE.

3 Thelearning Strategy

The high-level learning agorithm in ATRE belongs to the family of sequential
covering (or separate-and-conguer) algorithms [22] since it is based on the strategy
of learning one clause at a time (procedure LEARN-ONE-RULE), removing the
covered examples and iterating the process on the remaining examples. Indeed, a
recursive theory T is built step by step, starting from an empty theory T,, and adding a
new clause at each step. In this way we get a sequence of theories
T,=0,T,..T,T,,..T=T

such that T,,, = T,O{C} for some clause C, and al theories in the sequence are
consistent with respect to the training set. If we denote with LHM(T) the least
Herbrand model of a theory T, the stepwise construction of theories entails that
LHM(T) O LHM(T,,,), for each i}{0, 1, ..., n-1}. Indeed the addition of a clause to a
theory can only augment the least Herbrand model of the theory. Henceforth we will
assume that both positive and negative examples of predicates to be learned are
represented as ground atoms with a + or - label. Therefore examples may or may not
be elements of the Herbrand models LHM(T)).

Let pos(LHM(T))) and neg(LHM(T,)) be the number of positive and negative
examples in LHM(T,), respectively. If we guarantee that pos(LHM(T)) <
pos(LHM(T,,,)) for eachiC}{0, 1, ..., n-1}, and that neg(LHM(T,))=0 for each i(}{ O, 1,
..., n}, then &fter a finite number of steps a theory T, which is complete and
consistent, is built. Whether the theory T is “correct”, that is whether it classifies
correctly all other examples not in the training set, cannot be established, since no
information on the generalization accuracy can be drawn from the same training data.
In fact, the selection of the “best” theory is always made on the basis of an inductive
bias embedded in some heuristic function or explicitly expressed by the user of the
learning system (preference criterion).

In order to guarantee the first condition above, namely pos(LHM(T)) <
pos(LHM(T,,,)), we suggest to proceed as follows. First, a positive example € of a
predicate p to be learned is selected, such that € is not in LHM(T,). The example € is
caled seed. Then the space of definite clauses more general than € is explored,
looking for a clause C, if any, such that neg(LHM(T,.C {C}))=0. In this way we
guarantee that the second condition above holds as well. When found, C isadded to T,
giving T,,. If some positive examples are not included in LHM(T,,,) then anew seed is
selected and the processis repeated.

The most relevant novelties of the learning strategy sketched above are embedded
in the design of the procedure LEARN-ONE-RULE being proposed. Indeed, it
implements a parallel general-to-specific example-driven search strategy in the space
of definite clauses whose ordering (called generalized implication) is explained in
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Section 4. The search space is actually a forest of as many search-trees (called
specialization hierarchies) as the number of chosen seeds, where at least one seed per
incomplete predicate definition is kept. Each search-tree is rooted with a unit clause
and ordered by generalized implication. The forest can be processed in paralel by as
many concurrent tasks as the number of search-trees. Each task traverses the
specialization hierarchies top-down (or general-to-specific), but synchronizes
traversal with the other tasks at each level. Initially, some clauses at depth one in the
forest are examined concurrently. Each task is actually free to adopt its own search
strategy, and to decide which clauses are worth to be tested. If none of the tested
clauses is consistent, clauses at depth two are considered. Search proceeds towards
deeper and deeper levels of the specialization hierarchies until at least one consistent
clause is found. Task synchronization is performed after that all “relevant” clauses at
the same depth have been examined. A supervisor task decides whether the search
should carry on or not on the basis of the results returned by the concurrent tasks.
When the search is stopped, the supervisor selects the “best” consistent clause
according to the user's preference criterion. This strategy has the advantage that
simpler consistent clauses are found first, independently of the predicates to be
learned. Moreover, the synchronization allows tasks to save much computational
effort when the distribution of consistent clauses in the levels of the different search-
trees is uneven. The parallel exploration of the specialization hierarchies for the
concepts even and odd is shown in Fig. 2.

even(X) — odd(X)

s O\

even(X) « suec(Y,X) even(X) — §1100(X,Y) odd(X) ~ succ(Y,X) odd(X) « succ(X,Y)

N

even(X) —succ(Y,X) even(X) —succ(Y,X) odd(X) —succ(Y,X) | odd(X) « suec(Y,X)
uco(Z,Y) uce(Z,Y) even(Y) uce(X,2)

odd(X)  succ(Y,X)
zero(Y)

Fig. 2. Parallel search for the concepts even and odd.

To sum up, this separate-and-parallel-conquer search strategy provides us with a
solution to the problem of interleaving the induction process for distinct predicate
definitions. A different approach has been followed in MPL [9], which performs a
greedy hill-climbing search for theories and a beam search for each single clause.
Clauses can be generated by means of two types of refinement operators, one for the
body and one for the head. In particular, it is possible to generate the body of a clause
without specifying its head. The generation of clauseslike p — pisnot forbidden, and
it is possible to learn arecursive clause for a predicate p, before that a base clause for
p has been found. In fact, the algorithm uses a depth-bounded interpreter for checking
whether an induced theory logically entails an example.
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4 TheGeneralization Modd

A more precise definition of the search space of the LEARN-ONE-RULE stage is
necessary. A generality order (or generalization model) provides a basis for
organizing this search space. It can be proven that Buntine's generalized subsumption
[4] is an order suitable for simple recursive theories, since it is neither too strong nor
too weak.:

Definition 3 (generalized subsumption). Let C and D be two definite clauses with
digoint variables:
C: c,~-C,C,....C,
D: D, - D,D,, ...,D,
Then C is more general than D under generalized subsumption with respect to a
theory T, denoted C <, D, if there exists a substitution o such that C,o = D, and for
each substitution 6 that grounds the variables in D using new constants not occurring
inC, D, and T, it happens that:
TO{D, ~,D,0,...,D, 0} |4, (~C,C, ..., C o6

Unfortunately generalized subsumption is too weak for recursive theories. Thus,
we may resort to Plotkin's notion of relative generalization [26, 27].
Definition 4 (relative generalization). Let C and D be two definite clauses. Then C
is more general than D under relative generalization with respect to atheory T if there
exists asubstitution @suchthat T| = 0 (COO D).

However, relative generalization is too strong for our goals. Taken literally, it
would lead us to consider unintuitive solutions of the conquer stage as illustrated in
the following example.

Example Let us consider the following examples:
+ {p(a), p(b)}
— {p(c)}
the following background knowledge:
BK: {a(a), r(a,b), s(b), r(c,b)}
and the following incomplete theory built at the first step:
T p(X) — a(X)

Let p(b) be the selected seed. A desirable search space of clauses more general
than p(b) given BKOT, would be the set of clauses whose head is p(X), since our aim
is to induce a predicate definition for p. This space contains, for instance, the clause
p(X) — s(X). However, the space of clauses that are relatively more general than p(b)
given BKOT, includes other solutions, such as q(Y) — S(Y). This last clause is correct
and even relatively more general than p(X) — S(X). Nevertheless it is unacceptable
from an intuitive point of view because it seems not to be related to the target
predicate p. In this work, we do not consider these less intuitive solutions.

This restriction is reflected by an ordering, named generalized implication, which
isaspecia case of relative generalization.

L Informally, an order is too strong for a class L of theories when it can be used to organize
theories of a strictly wider classL' O L according to logical entailment. If the organization of
theoriesin L is not consistent with logical entailment, then the order istoo weak.
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Definition 5 (generalized implication). Let C and D be two definite clauses. Then C
is more general than D under generalized implication with respect to a theory T,
denoted as C <, ; D, if there exists a substitution 8 such that head(C) 8 = head(D) and
T|=0(Ce0 D).

This generality order can be proved to be strictly weaker than relative
generalization and strictly stronger than generalized subsumption. Moreover, the
following properties hold.

Proposition 1. Let C, D and E be definite clauses and T a theory. The generalized
implication order satisfy the properties of:

i) reflexivity: C<.5 C

ii) trangitivity: C<,.pDandD <. EthenC< s E

Proof i) Trivia if the empty substitution is chosen. ii) By definition, there exists a
substitution 6; such that head(C)8; = head(D) and T | = 0(C8; O D) and there exists
a substitution 8, such that head(D)6,=head(E) and T | = O(D8, 0 E). Let 6= 6,6,
be the substitution obtained by composition of 6; and 6,. Let us prove that fis a
subgtitution such that C is more general than E under generalized implication. By
definition of compound substitution, we can say that head(C)6 = head(C)6,0, =
head(D)6, = head(E). Given that the implication is monotone with respect to the
application of a substitution, T | = 0(CH; O D) entails T | = 0(CH,6, 0 DB,). From
T|=0(CH:6,0 DB, rewrittenas T | =0(C60 DO)and T|=0O(D6, 0 E), T| =
0(Ce0 E) follows.

It can aso be proved the semi-decidability of the generalized implication, namely
the termination of the generalized implication test is guaranteed when C<.; D.
However, such a negative result is overcome when Datalog clauses [6] are
considered. In fact, the restriction to function-free clauses is common in ILP systems,
which remove function symbols from clauses and put them in the background
knowledge by techniques such as flattening [29].

The generalization model represents another difference between ATRE and MPL,
whose refinement operators are based on 6-subsumption. MPL adopts two different
generalization models during its search: 6-subsumption while learning a single clause,
and logical entailment while learning the whole theory. Therefore, two distinct checks
are performed by the system for each learned clause: aloca consistency/completeness
check based on 6-subsumption and a global check based on logical entailment.

4.1 AnImplementation of the Generalized Implication Test

A naive implementation of the generalized implication test is obtained by computing
the least Herbrand models of {CEOT and {D}OT. C<,D if and only if

LHM{D}OT)OLHM{CEOT) for some 6 such that head(C)8 = head(D). Since the
least Herbrand model of a theory T coincides with the least fixed point of the

immediate consequence operator 7,2 we have an operative way to compute the least

2 The standard notation used in logic programming and deductive databases for the immediate
consequence operator is T,, where P is the logic program or the Datalog program.
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Herbrand models. Moreover, the convergence to the fixpoint is guaranteed by the
finiteness of the Herbrand base for Datalog theories.
One reason for inefficiency in the naive evaluation is that ground facts in LHM(T)

may be computed many times during the iterative application of 7. Semi-naive
evaluation partially overcomes this redundancy by partitioning T into n layers such

way, clauses in T°..0 T are not considered anymore while computing the logical
conseguencesof T.

ExampleLet T’ be the following theory:

Ci: p(X) « a(X)

G a) < r(XY)
and

BK: {q(a), r(a.,b), s(b), r(c,b)}

Let us suppose that the theory T=BKOT’' may be partitioned as follows:
T=T°’OT'OT where T’={r(a,b), s(b), r(c,b)}, T'={q(a), C;} and T’={C}}.

Indeed, LHM(T)= {q(a), r(a.b), s(b), r(c,b), q(b), p(a), p(b)}, and
LHM(T)=T°
LHM(T°OT)=LHM(LHM(T")OT)=LHM(T°0T")=

={r(ab)s(b)r(c,0).q().a)}= .. ({r(ab), s(b), r(c,b)})=T . (LHM(T?))
LHM(T’OT'OT)=LHM(LHM(T’OT)OT)=LHM({ r(a,b),s(b),r (c,b),q(a),q(b)} O{C } =

={r(a,b).s(b).r(c,b),a(a),a(b).p(@).p(b)} =

=T, ({r(ab)s(b)r(ch).a@).a0})=T . (LHM(T'OT))

Notice that according to the classical iterative application of the immediate
consequence operator the ground atoms p(a) and q(b) would be computed both in
.1 2and 1,1 3, since:
10:=0
T.11:=17(1,10) = BK
1,12:= (1,1 1) = BKO{p(a), q(b)}

I,13:= 1(1;1 2) = BKO{ p(a), q()} O{ p(a), a(b), p(b)}

Issues related to the problem of finding layers of a recursive theory T such that
LHM(T)=LHM(O,_,,T)=LHM(LHM(O_, ,,T)OT™") ae to be addressed.
Difficulties arise because the dependency graph \(T) is a directed cyclic graph. In

order to remove cycles from WT) we resort to the notion of strongly connected
component of adirected graph [19].

Definition 6 (collapsed dependency graph). Let YT) be the dependency graph of a
logical theory T. The collapsed dependency graph of T, denoted as y(T), is a

Henceforth, the operator will be denoted by 7, in order to avoid confusion with the symbol T
used for logical theories.
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directed acyclic graph (dag) obtained by collapsing each (maximal) strongly
connected component of (T) into asingle node.

Given the properties of dag's, it is easy to compute the level of a predicate pOm(T)
as the maximum distance of [p] from a termina node in y(T) where terminal nodes
are nodes with no out-coming edges.

Definition 7 (predicate level). Let y(T) be the collapsed dependency graph of a

logical theory T. The level of a predicate pO7(T) is given by:

level(p) = O if [p] isaterminal nodein y(T),
1+ max {level(q) | qOm(T) and [q] isachild of [p] in y(T)} otherwise

Any logical theory can be layered on the basis of the level of its predicates.

Definition 8 (layered theory). Let y(T) be the collapsed dependency graph of a
logical theory T. Then T can be partitioned into n digoint sets of clauses
T=T°0..0 T0O.O T caled layers, such that
Oif 0, .., n-1}: A(T) = {p0mn(T)| level(p)=i}.
It is worthwhile to observe that such technique for the layering of alogical theory
induces atotal order onthelayers, T’< ... < T'<...<T™

Example Let T be atheory obtained by the union of a background knowledge
BK: {f(a), s(a,b), s(b,c), s(c.d), s(d,e)}
and atheory T' consisting of
C: P~ f(x)
C,  qY) - p2),szZY)
C;  pU) « V), s(V.U)
Given T=BK O T', then (T)={f, s, p, g} while (T) isthe following:

<

f\ s

Thus 7(T) = {[f], [g], [p, d]}, and y(T) isthe following graph:
[p, a

[f] [s]
from which the two layers T’=BK and T'=T' are extracted.
The following proposition can be proved.

Proposition 2. Let H be a ground atom with predicate symbol pO7(T"). Then
Proof
(0) By induction over the layer k.

k=0. Let HOLHM(T). Then by the fix-point theorem, [0>0 such that HT .11, that is,
by definition of immediate consequence operator, there exists a ground clause of T,

H<A,...,Adground(T), where A ,t(i-1), j=1,2,....m. Since pOn(T) then
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H<A,....,AOground(T’). We want to prove that each AOLHM(T’), from which
HOLHM(T®) follows.
The proof continues by induction over theiteration step i.
i=1. Since H@ .1 1 then HOT, that is H is a ground fact of the theory T. More
specifically, HOT®, therefore H isin the LHM(T?).
i>1. Each AT ,1(i-1), therefore AOLHM(T). From the construction of the
layers follows that each A is a ground atom with predicate symbol pJI]n(TO).
By the induction hypothesis each AIDLHM(TO), =12, ..., m.
k>0. Again, let HOLHM(T). Then for the fix-point theorem, [0>0 such that H@ ,11i,
that is, by definition of immediate consequence operator, there exists a ground clause
of T, H-A,,...,A Oground(T), where A@ .1 (i-1), j=1, 2, ...,m. We want to prove that
AOLHM(LHM(O ., . « THOTY), from which HOLHM(LHM(O_, ., T)OT") follows.
The proof continues by induction over the step i.
i=1. Since H@ .11 then HOT, that is H is a ground fact of the theory T. More

specifically, HOT, therefore H is in the LHM(T), and more in general H isin

Herbrand model of the theory.

i>1. From the construction of the layers follows that each A is a ground atom
with predicate symbol p[t (T'), with r<k. Moreover Al .1 (i-1), therefore
AOLHM(T). By both inductive hypotheses (over k and i), we may say that
. TYOT, for each j=1, 2, ...,m, and then conclude that

monotone and TOT, T« (LHM(O., ., T))tee O Tk (LHM(T)) 1o =LHM(T).

Therefore HOLHM(T). u

This proposition states that a necessary and sufficient condition for a ground atom
with predicate symbol pO7(T") being in LHM(T) is that H is computed by iteratively
applying the immediate consequence operator T« starting from the interpretation

least Herbrand model of alayered theory.

Theorem. Let T be a theory which has been partitioned into n layers according to the
criterion defined in Definition 8. Then
,,,,,,,,,,, . THOTT).
Proof

(O) Let P°, P,..., P™" be a partition of LHM(T) such that each P, i=0, ..., n-1,
contains only ground atoms with some predicate symbol in 7(T). From Proposition 2
it follows POLHM(LHM(O _, ., T)OT) and LHM(T)=P°’OP'CL..0 P™OLHM(T)O

r=1,..i-1
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Therefore HOLHM(T). u

To sum up, the layering of a theory provides a semi-naive way of computing the
generalized implication test presented above. The importance of layering will be more
evident when the problem of recovering consistency will be faced (see the following
Section).

5 TheConsistency Recovery Strategy

Another learning issue to be considered in the multiple predicate learning is the non-
monotonicity of the norma ILP setting: Whenever two individual clauses are
consistent on the data, their conjunction needs not to be consistent on the same data
[11]. Algorithmic implications of this property may be effectively illustrated by
means of an example.

Example. Let the following sets be positive examples, negative examples and
background knowledge respectively:
+: {p(a), p(c), p(e), ab)}
—  {q(d)}
BK: {f(a), s(a,b), s(b,c), s(c,d), s(d,e)}
Let us suppose that the following consistent, but not complete, recursive theory T,
has been learned after two conquer stages:
C p(X) — f(X)
Cz: q(Y) - p(Z)! S(Z!Y)
Note that C, <, 00 {P(@)}, and C, <0 0 {A(0)}, that is T, entails p(a) and
g(b) given BK. Since T, isincomplete, the learner will generate anew clause, say
& p(U) — a(V), s(V.U)
which is consistent (it covers p(c) alone, given T,[0BK), but when added to the
recursive theory, it makes clause C, inconsistent (C, <, ,,0g¢0 {d(d)})-

There are several ways to remove such inconsistency by revising the learned
theory. Nienhuys-Cheng and de Wolf [25] describe a complete method to specialize a
logic theory with respect to sets of positive and negative examples. The method is
based upon unfolding, clause deletion and subsumption. These operations are not
applied to the last clause added to the theory, but may involve any clause of the
inconsistent theory. As a result, clauses learned in the first inductive steps could be
totally changed or even removed. This theory revision approach, however, is not
coherent with the stepwise construction of the theory T presented in Section 3, since it
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re-opens the whole question on the validity of clauses added in the previous steps. An
aternative approach consists of simple syntactic changes of the theory, whose
ultimate effect is that of creating new layers in a logica theory, just as the
stratification of a normal program creates new strata[2].

Our proposal of recovery strategy fits the latter approach since it is based on the
layering technique illustrated in Section 4.1 (see Definition 8).

Example In the previous example, it is possible to define only two layers for T,0BK
1. T°=BK with T(T%)=({f, s}, and
2. T={C,C,C} with T(T)={p, q} .
By reformulating C, and C, asfollows: P
C: p(X « (X \
C: qiY) - PD.S2ZY)
and by adding the following two clauses: q
G pW) ~ p'(W)

C: p(U) « q(V), (V.U) ,
the new theory T, will present four layers:

1 T=BK with T(T)={, 5}, l
2. T'={C} with T(T)={p},
3. T={C)} with T(T%)={q}, and f S

4. T={C,C}  with(T)={p}.

It is straightforward to notice that the theory T, is consistent. As effect of theory
restructuring, p and g are no longer in the same equivalence class in the collapsed
dependency graph, and the number of layers increased.

More generally, let T=T°L1..0 TL[..O T and suppose that the addition of a clause
C to the theory T makes a clause in T inconsistent. The recovery strategy based on
layering simply substitutes all occurrences in T of the predicate p in head(C) with a
new predicate symbol, p’, before adding the two clauses C and p(t,,...,t)) = p’ (t,.....t.).
Proposition 3. The new theory T’ obtained as above has a number of layers greater
than or equal to T.

Proof. Let | bethelevel(p) in y(T) . Since p’ replaces p in T it has the same level of p
before theory restructuring, namely level(p)=l in y(T'). Moreover level(p)>level(p’)
in yp(T"). If | equals the maximum level of a node in y(T), then the new theory T’

has a predicate at a greater level, that is the number of layers in T’ increases.
Conversely, the level of al predicates g depending on p in T can either increase
because of the breaking of equivalence classes or remain stable. ]

This proposition generalizes the consideration on the increase of layers made for
the example above. The main problem remains the coverage of the new theory T".

Proposition 4. The new theory T’ is consistent.

Proof. Let T” = T \{C}. From the construction of T” follows LHM(T") =
LHM(MO{pt,,....t )| pt, ....t )OLHM(T)}. Indeed, T” simply renames p with p~ and
adds the clause p(t,, ...t) < p'(t, ...t). T”is consistent with respect to the training
set, since LHM(T) does not include negative examples (T is consistent before adding
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C), and no conflict can be generated between the new ground atoms p‘(t,,...,t ) and the
training set. Moreover, no clause in T” depends on p, because of renaming. Therefore,
LHM(T") = LHM(LHM(T") O { C}). Suppose that T’ is inconsistent, that is there exists
a ground atom HOLHM(T?) such that H is a negative example in the training set.
Obviously, HOLHM(T”) since we have just proved T” being consistent. By
hypothesis, the clause C is consistent given T (otherwise it would not be selected
during the learning process), therefore LHM(LHM(T)O{ C}) does not contain negative
examples. Since LHM(T")=LHM(T)O{p‘(t,,....t)| p(t,, ...,t JOLHM(T)} and p‘(t,,....,t)
do not affect the set of conseguences computed by the immediate consequence
operator, we conclude that also LHM(LHM(T”)O{C}) does not contain negative
examples. |

Proposition 5. LHM(T) O LHM(T").

Proof. Let T” = T \{C}. By construction of T” and T”, the thesis follows from the
chaining of the inclusons LHM(T)=LHM(LHM(T")C{C}) O LHM(T”) and
LHM(T")=LHM(T)O{ p’(t,,...,t )|p(t,,...,t YOLHM(T)} OLHM(T). [ |

To sum up, the new theory T’is consistent and keeps the original coverage of T.

It is noteworthy that in the proposed approach to consistency recovery new
predicates are invented, aiming at accommodating previously acquired knowledge
(theory) with the currently generated hypothesis (clause). This approach differs from
that adopted by MPL, which recovers inconsistency by allowing removal of globally
inconsistent clauses from the current theory.

6 Application to the Document Understanding Problem

The proposed approach to multiple predicate learning has been implemented in the
learning system ATRE, whose representation language can be easily transformed into
Datalog clauses extended with built-in predicates. An application to the problem of
learning the mutual recursive predicate definition of even and odd is reported in [21].
ATRE has been also applied to the problem of processing printed documents and its
induced logical theories are used by an intelligent document processing system,
named WISDOM++ (http://www.di.uniba.it/~malerba/wisdom++/) [13]. Henceforth, only
the specific problem of learning rules for document understanding will be addressed.
The main novelty with respect to previous work is the automated discover of possible
concept dependencies as well as the consideration of multi-page documents.

A document is characterized by two different structures representing both its
internal organization and its content: The layout (or geometrical) structure and the
logical structure. The former associates the content of a document with a hierarchy of
layout objects, such as text lines, vertical/horizontal lines, graphic/photographic
elements, pages, and so on. The latter associates the content of a document with a
hierarchy of logical objects, such as sender/receiver of a business letter, title/authors
of an article, and so on. Here, the term document understanding denotes the process of
mapping the layout structure of a document into the corresponding logical structure.
The document understanding process is based on the assumption that documents can
be understood by means of their layout structures alone.
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The mapping of the layout structure into the logical structure can be represented as
a set of rules. Traditionally, such rules have been hand-coded for particular kinds of
document [24], requiring much human tune and effort. We propose the application of
inductive learning techniques in order to generate automatically the rules from a set of
training examples. The user-trainer is asked to label some layout components of a set
of training documents according to their logical meaning. Those layout components
with no clear logical meaning are not labeled. Therefore, each document generates as
many training examples as the number of layout components. Classes of training
examples correspond to the distinct logical components to be recognized in a
document. The unlabelled layout objects play the role of counterexamples for all the
classes to be learned.

Each training example is represented as an object in ATRE, namely a multiple-
head ground clause, where different constants represent distinct layout components of
a page layout. The description of a document page is reported in Fig. 3 while Table 1
lists all descriptors used to represent a page layout of a multi-page document.

Table 1. Descriptors used by WISDOM ++ to represent a page layout of a multi-page document.

Descriptor Domain
page(page) Nominal domain: first, intermediate, last_but_one, last
width(block) Integer domain: (1..640)
height(block) Integer domain: (1..875)
x_pos_centre(block) Integer domain: (1..640)
y_pos_centre(block) Integer domain: (1..875)
type_of(block) Nominal domain: text, hor_line, image, ver_line,
graphic, mixed
part_of(page,block) Boolean domain: true if page contains block

on_top(block1,block2) Boolean domain: true if block1 is above block2

to_right(blockl,block2)  Boolean domain: trueif block2 isto the right of blockl

alignment(blockl,block2) Nominal domain: only_left col, only right_col,
only_middle_col, both_columns, only_upper_row,
only lower_row, only middle row, both rows

The following rules are used as background knowledge, in order to automatically
associate information on page order to layout blocks.

at_page(X)=first — part_of(Y,X), page(Y)=first

at_page(X)=intermediate — part_of(Y,X), page(Y)=intermediate

at_page(X)=last_but_one  part_of(Y,X), page(Y)=last_but_one

at_page(X)=last ~ part_of(Y,X), page(Y)=last

Three long papers appeared in the January 1996 issue of the IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI) have been considered. The papers
contain thirty-seven pages, each of which has a variable number of layout components
(about ten on average). Layout components can be associated with at most one of the
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following eleven logica labels: abstract, affiliation, author, biography, caption,
figure, index_term, page_number, references, running_head, title.

Learning rules for the recognition of semantically relevant layout componentsin a
document raises issues concerning the induction of recursive theories. Simple and
mutual concept dependencies are to be handled, since the logical components refer to
a part of the document rather than to the whole document and may be related to each
other. For instance, in case of papers published in journals, the following dependent
clauses:

running_head(X) — top_left (X), text(X), even_page_number(X)

running_head(X) — top_right (X), text(X), odd_page number(X)

paragraph(Y) — ontop(X,Y), running_head(X), text(Y)

= tpamil-1.TIF - Wisdom++ _ =] x]

File Operste Wiew Parameters Leaming Management Help

e T e N N e e = e = = e R N R N A )

bage numbex

part_of(1 2)=true,

s achive Testing Moder for Tracking Hoa page(1)=first -
in Batellite Images

h part_of{1.16)=true.
| wicth(2)=280
wiclth(3)=34,

wichtn(16)-1 05,
height(2)=6.
height(3)=6.

height(1 5)=5.
type_of(2)=hor_line,
type_of{3)=text,

e ot E)=text,
x_pos_centre(2)=164,
x_pos_centre(3)=362.

«_pos_centre(16)=286,
_pos_centre(2)=2E,
_pos_centre(3)=26,

\_pos_cenre(16)-784,
on_iop(.5)=true,
an_iop(3.5)=true.

on_iop(13.14)=true.
to_right(12,15)=true,

to_right(9,10)=true,
alignrent(2,11)=only_left_cal
alignment(4.15)=onky_right_cal,

alignment(3.4)=only_middle_row -
4 | >

For Help. press F1 DocumentMulti Page  [Page:1/14 [Level:Frame? [Block Type:Al |Doc. classilong | [MUM | |

Fig. 3. Layout of the first page of a multi-page document (left) and its partid
description in afirst-order logic language (right).

express the fact that a textual layout component at the top left (right) hand corner of
an even (odd) page is a running head, while a textual layout component below a
running-head is a paragraph of the paper. Moreover, the recursive clause

paragraph(Y)  ontop(X,Y), paragraph(X), text(Y)
is useful to classify all textual layout components below the upper-most paragraph.
Therefore, document understanding seems to be the kind of application that may
benefit of learning strategies for multiple predicate learning. Generally, the main
benefits are:
e Learnability of correct concept definitions. For instance, some relational systems
that do not take concept dependencies into account such as FOIL [28], cannot
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learn the definitions of “appending two lists’ and “reversing alist” independently,
since the former concept is essential to give a reasonably compact definition of the
second concept.

* Rendering explicit some concept dependencies, which would be otherwise hidden
in a set of flat, independent rules. A correct logical theory structured around a
number of dependent concepts does not contain those redundancies of its
equivalent theory with independent concepts, therefore it is more comprehensible
and easier to be validated by experts.

By running ATRE on the training set described above, the following theory is
returned:

logic_type(X)= running_head — y pos centre(X)18 .. 39], width(X)[[77 .. 544]

logic_type(X)= page_number — width(X) [7[2.. 8], y_pos centre(X)[[19 .. 40]

logic_type(X)= figure — type of(X)=image, at_page(X)=intermediate

logic_type(X)= figure  type of(X)=graphic

logic_type(X)= abstract — at_page(X)=first, width(X)[[487 .. 488]

logic_type(X)= affiliation — at_page(X)=first, y_pos centre(X)]720 .. 745]

logic_type(X)= caption  height(X)[9 .. 75], alignment(Y,X)=only_middle_col,

logic_type(Y)= figure, type_of(X)=text

logic_type(X)= author — at page(X)=first, y_pos centre(X)[[128 .. 158]

9. logic_type(X) = references — height(X)[[332 .. 355], x_pos_centre(X) [ 153 .. 435]

10. logic_type(X) = title — at_page(X)=first, height(X)]18 .. 53]

11. logic_type(X)=biography — at_page(X)=last, height(X). ] 65 .. 234]

12. logic_type(X)=caption ~ height(X)[9 .. 75], on_top(Y,X) , logic_type(Y)=figure,

type_of(X)=text, to_right(Z,Y)

13. logic_type(X)=index_term — height(X)[]8 .. 8], y_pos_centre(X)]263 .. 295]

14. logic_type(X)=caption ~ alignment(X,Y)=only_lower_row, height(X)[9 .. 9]

15. logic_type(X)=caption — on_top(Y,X), logic_type(Y)=figure, type of(X)=text,

alignment(Y,2)=only_right_col

16. logic_type(X) = caption — height(X)[9 .. 75], on_top(X,Y), logic_type(Y)=figure,

type_of(X)=text, type_of(Y)=graphic

17. logic_type(X)=caption « height(X)19 .. 75], alignment(Y,X)=only_left_col,

alignment(Z,Y)=only_left_col, logic_type(Z)=caption, width(Z) (][ 467 .. 546]

NoOkWNPE

©

Clauses are reported in the order in which they are learned. They have been filtered
out from candidate clauses during the evaluation step performed according to a
composite preference criterion that minimizes the number of negative examples
covered, maximizes the number of positive examples covered, and minimizes the cost
of the clause. The theory contains some concept dependencies (see clauses 7 and 12)
as well as some kind of recursion (se clause 17). Learned concepts belong to two
digtinct layers. abstract, affiliation, author, biography, figure, index term,
page_number, references, running_head, and title are in one layer, while caption in
the other. During the learning process, it was not necessary to recover theory
consistency, and from our experience, the cases in which the recovery is required are
rare. Surprisingly, some expected concept dependencies were not discovered by the
system, such asthat relating the running head to the page number:

logic_type(X)= page_number — to_right(X,Y), logic_type(Y)= running_head
logic_type(X)= page_number — to_right(Y,X), logic_type(Y)= running_head
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The reason is due to the semantics of the descriptor to_right, which is generated by
WISDOM++ only when two layout components are at a maximum distance of 100
points, which is not the case of articles published on the PAMI transactions. Same
consideration applies to other possible concept dependencies (e.g., title-authors-
abstract).

In order to test the predictive accuracy of the learned theory, we considered the
fourth long article published in the same issue of the transactions used for training.
WISDOM ++ segmented the fourteen pages of the article into 169 layout components,
sixteen of which (i.e., less than 10%) could not be properly labeled using by the
learned theory (omission errors). No commission error was observed. This is
important in this application domain, since commission errors can lead to totally
erroneous storing of information. Finally, it is important to observe that many
omission errors are due to near misses. For instance, the running head of the first page
is not recognized simply because its centroid is located at point 40 along the vertical
axis, while the range of y_pos center values determined by ATRE in the training
phase is [18..39] (see clause 1). Significant recovery of omission errors can be
obtained by relaxing the definition of flexible matching between definite clauses[12].

7 Conclusionsand Future Work

In this paper we have discussed and proposed computational solutions to some
relevant issues raised by the induction of recursive theories in the normal ILP setting.
A separate-and-parallel-conquer search strategy has been adopted to synchronize and
interleave the learning of clauses supplying predicates with mutually recursive
definitions. A novel generality order, called generalized implication, has been
imposed to the search space of clauses in order to cope with recursion in a more
suitable way. A layering technique based on the collapsed dependency graph has been
investigated to recover the consistency of a partially learned theory. These ideas have
been implemented in the ILP system ATRE and tested in the specific context of the
document understanding problem. Experimental results obtained on a set of real-
world multi-page documents empirically prove the validity of our approach to
multiple predicate learning as well as the importance of taking predicate dependencies
into account in the chosen domain application. In the future, we mean to refine the
solutions being proposed in order to remove some inefficiency. In particular, it is
necessary to optimize the separate-and-parallel-conquer search strategy with the aim
of preventing it from exploring the specialization hierarchies repeatedly during the
learning process. Moreover, we plan to investigate further the reasons causing the
unsuccessful discovery of some expected concept dependencies. Finaly, it is worth to
test the system performance in case of document understanding problems with a
richer set of logical components to be recognized.



110 Floriana Esposito, Donato Malerba, and Francesca A. Lis

References

©

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Aha, D.W., Lapaointe, S., Ling, C.X., Matwin, S.: Learning recursive relations with
randomly selected small training sets. Proc. 11th Int. Conf. on Machine Learning, (1994)
12-18

Apt, K.R.: Logic programming. In: van Leeuwen, J. (ed.): Handbook of Theoretica
Computer Science, Vol. B. Elsevier, Amsterdam (1990) 493-574

Bostrém, H.: Speciaization of recursive predicates. In Lavrac, N., Wrobel, S. (eds.):
Machine Learning ECML-95. Lecture Notes in Artificial Intelligence, Vol. 912. Springer-
Verlag, Berlin (1995) 92-106

Buntine, W.: Generalised subsumption and its applications to induction and redundancy.
Artificial Intelligence, Vol. 36 (1988) 149-176

Cameron-Jones, R.M., Quinlan, JR.: Avoiding pitfalls when learning recursive theories.
Proc. 12th Int. Joint Conf. on Artificial Intelligence, (1993) 1050-1055

Ceri, S, Gottlob, G., Tanca, L.: What you aways wanted to know about Datal og (and never
dared to ask). |EEE Transactions on Knowledge and Data Engineering 1(1) (1989) 146-166
Cohen, W. W.: Learnability of restricted logic programs. In: Muggleton, S. (ed.): Proc. 3"
Int. Workshop on Inductive Logic Programming, (1993) 41-71

De Raedt, L.: Interactive Theory Revision. Academic Press, London (1992)

De Raedt, L., Lavrac, N., Dzeroski, S.: Multiple predicate learning. Proc. 13th Int. Joint
Conf. on Artificia Intelligence, (1993) 1037-1042

De Raedt, L., Lavrac, N.: The many faces of inductive logic programming. In:
Komorowski, J., Ras, Z.W. (eds.): Methodologies for Intelligent Systems. Lecture Notes in
Artificia Intelligence, Vol. 689. Springer-Verlag, Berlin (1993) 435-449

De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26(2/3), (1997) 99-146
Esposito, F., Caggese, S., Malerba, D., Semeraro, G.: Classification in noisy domains by
flexible matching. Proc. European Symposium on Intelligent Techniques, (1997) 45-49
Esposito, F., Malerba, D., Lisi, F.A.: Machine Learning for Intelligent Processing of Printed
Documents. In: Ras, Z.W., Skowron, A. (eds.): Journa of Intelligent Information Systems
16. Kluwer Academic Publishers (2000) 175-198

Flach, P.: A framework for inductive logic programming. In: Muggleton, S. (ed.): Inductive
Logic Programming, Vol. 38 of Apic Series. Academic Press, London (1992) 193-211
Flener, P, Yilmaz, S.: Inductive Synthesis of Recursive Logic Programs: Achievements
and Prospects. Journal of Logic Programming 41(2/3), Special Issue on Synthess,
Transformation and Analysis, (1999) 141-195

Giordana, A., Saitta, L., Baroglio, C.: Learning simple recursive theories. In: Komorowski,
J., Ras, ZW. (eds.): Methodologies for Intelligent Systems. Lecture Notes in Artificial
Intelligence, Vol. 689. Springer-Verlag, Berlin (1993) 425-434

Idestam-Almquist, P.: Efficient induction of recursive definitions by structural analysis of
saturations. In: De Raedt, L. (ed.): Advances in Inductive Logic Programming. 10S Press,
Amsterdam (1996) 192-205

Jorge, A., Brazdil, P.: Architecture for iterative learning of recursive definitions. In: De
Raedt, L. (ed.): Advances in Inductive Logic Programming. |OS Press, Amsterdam (1996)
206-218

van Leeuwen, J.: Graph Algorithms. In: van Leeuwen, J. (ed.): Handbook of Theoretical
Computer Science, Vol. A. Elsevier, Amsterdam (1990) 525-631

Malerba, D., Semeraro, G., Esposito, F.: A multistrategy approach to learning multiple
dependent concepts. In: Nakhaeizadeh, G., Taylor, C. (eds): Machine Learning and
Statistics: Theinterface. John Wiley & Sons, New Y ork (1997) 87-106

Malerba, D., Esposito, F., Lisi, F.A.: Learning Recursive Theories with ATRE. In: Prade,
H. (ed.), Proc. 13" Europ. Conf. on Artificial Intelligence. John Wiley & Sons, Chichester
(1998) 435-439

Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)



23.

24.

25.

26.

27.

28.

29.

Induction of Recursive Theoriesin the Normal ILP Setting: Issues and Solutions 111

Mofizur, C.R., Numao, M.: Top-down induction of recursive programs from small number
of sparse examples. In: De Raedt, L. (ed.): Advancesin Inductive Logic Programming. 10S
Press, Amsterdam (1996) 236-253

Nagy, G., Seth, S.C., Stoddard, S.D.: A prototype document image analysis system for
technical journals. IEEE Computer 25(7), (1992) 10-22

Nienhuys-Cheng, S.-W., de Wolf, R.: A complete method for program specialization based
upon unfolding. Proc. 12th Europ. Conf. on Artificial Intelligence (1996) 438-442

Plotkin, G.D.: A note on inductive generaization. In: Meltzer, B., Michie, D. (eds.):
Machine Intelligence 5. Edinburgh University Press, Edinburgh (1970) 153-163

Plotkin, G.D.: A further note on inductive generalization. In: Meltzer, B., Michie, D. (eds.):
Machine Intelligence 6. Edinburgh University Press, Edinburgh (1971) 101-124

Quinlan, JR.: Learning Logical Definitions from Relations. Machine Learning 5 (1990)
239-266

Rouveirol, C.: Flattening and saturation: Two representation changes for generalization.
Machine Learning 14(2) (1994) 219-232



	1	Introduction
	2	Recursive Theories: Learning Issues
	3	The Learning Strategy
	4	The Generalization Model
	4.1	An Implementation of the Generalized Implication Test
	5	The Consistency Recovery Strategy
	6	Application to the Document Understanding Problem
	7	Conclusions and Future Work
	References

