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Abstract. In recent times, there is a growing interest in both the extension of 
data mining methods and techniques to spatial databases and the application of 
inductive logic programming (ILP) to knowledge discovery in databases 
(KDD). In this paper, an ILP application to association rule mining in spatial 
databases is presented. The discovery method has been implemented into the 
ILP system SPADA, which benefits from the available prior knowledge on the 
spatial domain, systematically explores the hierarchical structure of task-
relevant geographic layers and deals with numerical aspatial properties of spa-
tial objects. It operates on a deductive relational database set up by selecting 
and transforming data stored in the underlying spatial database. Preliminary 
experimental results have been obtained by running SPADA on geo-referenced 
census data of Manchester Stockport, UK. 

1   Introduction 

One of the great challenges for the near future is knowledge discovery in ever grow-
ing spatial sets [4]. Nevertheless, most work in the KDD community up to now has 
been almost exclusively focused on pattern discovery in relational and transaction 
databases. Only in recent times, data mining methods and techniques have been pro-
posed for the extraction of implicit knowledge, spatial relations, or other patterns not 
explicitly stored in spatial databases [8]. Peculiarity of the spatial domain is that the 
attributes of the neighbors of some spatial object of interest may have an influence on 
it and therefore have to be considered as well [6]. Thus, spatial data mining algo-
rithms cannot neglect the implicit relations of spatial neighborhood (e.g. topological 
relations) that are defined by the explicit location and extension of spatial objects.  

As the interest in KDD is generally increasing, many recent applications of ILP 
methods and techniques to KDD have also emerged [3]. We claim that spatial data 
mining is a promising ILP application domain for two main reasons. First, ILP relies 
on the theory of computational logic which supplies representation and reasoning 
means appropriate for the spatial domain where relations among objects play a key 
role and are often inferred by qualitative reasoning. Second, ILP offers an elegant 
solution to multi-relational mining whereas traditional approaches to spatial data 
mining usually solve the problem by collapsing multiple relations into the universal 
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relation [9]. To the best of our knowledge, very few contributions from ILP to knowl-
edge discovery in spatial databases have been reported in the literature. GwiM [14] is 
a general-purpose ILP system that can solve several spatial data mining tasks, though 
no insight in the algorithmic issues has been provided. INGENS [11] is an inductive 
GIS with learning capabilities that currently support the classification task.  

In this paper, we focus our attention on the task of mining spatial association rules, 
namely the detection of associations between spatial objects, and propose to accom-
plish the task by means of a novel special-purpose ILP system, called SPADA (Spa-
tial PAttern Discovery Algorithm) [12]. It benefits from the available prior knowl-
edge on the spatial domain, systematically explores the hierarchical structure of task-
relevant geographic layers and deals with numerical aspatial properties of spatial 
objects. Furthermore, it operates on a deductive relational database (DDB) set up by 
selecting and transforming data stored in the underlying spatial database. The analysis 
of geo-referenced census data have been chosen as an application domain. Indeed, the 
advances in the practice of geo-referencing socioeconomic phenomena allow census 
data to be conceptualized as spatial objects with numerical aspatial properties.  

The paper is organized as follows. Section 2 introduces the spatial data mining 
problem solved by SPADA. Experimental results on geo-referenced census data of 
Stockport, one of the ten Metropolitan Districts of Greater Manchester, UK, are re-
ported in Section 3. Conclusions are given in Section 4. 

2   Mining Spatial Association Rules with SPADA 

The discovery of spatial association rules is a descriptive mining task aiming at the 
detection of associations between reference objects and task-relevant objects, the 
former being the main subject of the description while the latter being spatial objects 
that are relevant for the task at hand and spatially related to the former. For instance, 
we may be interested in describing a given area by finding associations among large 
towns (reference objects) and spatial objects in the road network, hydrography and 
administration layers (task-relevant objects). Some kind of taxonomic knowledge on 
task-relevant geographic layers may also be taken into account to get descriptions at 
different concept levels (multiple-level association rules). As usual in association rule 
mining, we search for associations with large support and high confidence (strong 
rules). Formally, SPADA can solve the following spatial data mining problem:  
Given 
− a spatial database (SDB), 
− a set of reference objects S, 
− some task-relevant geographic layers Rk, 1≤k≤m, together with spatial hierarchies 

defined on them,  
− two thresholds for each level l in the spatial hierarchies, minsup[l] and minconf[l]  
Find strong multiple-level spatial association rules. 

To solve the problem Koperski and Han propose a top-down, progressive refine-
ment method which exploits taxonomies both on topological relations and spatial 
objects [9]. The method has been implemented in the module Geo-associator of the 
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spatial data mining system GeoMiner [7]. We propose an upgrade of Geo-Associator 
to first-order logic representation of data and patterns. The approach is inspired to the 
work on multi-relational data mining reported in [2] and operates on a DDB set up by 
a preliminary feature extraction step from SDB and denoted D(S). In particular, we 
resort to Datalog [1], whose expressive power allows us to specify also prior knowl-
edge (BK) such as spatial hierarchies, spatial constraints and rules for spatial qualita-
tive reasoning. Given a set of Datalog atoms A, a spatial association rule in D(S) is an 
implication of the form P→Q (s%, c%), where P⊆ A, Q⊆ A, P∩Q=∅ , and at least one 
atom in P∪ Q represents a spatial relationship. The percentages s and c are called the 
support and the confidence of the rule respectively. An example of spatial association 
rule in our framework is: 

is_a(A, large_town), intersects(A,B), intersects(A,C), is_a(C, regional_road), intersects(D,C), 
D\=A, C\=B  → is_a(B, main_trunk_road), is_a(D, large_town)  (54%, 86%) 
“GIVEN THAT 54% of large towns intersect both a main trunk road and a regional 
road the latter intersecting a large town distinct from the previous one, IF a large 
town A intersects two spatial objects the former being an unknown B while the latter 
being a regional road which in turn intersects some spatial object D distinct from A 
THEN WITH CONFIDENCE 86% B is a main trunk road and D is a large town”. 

The choice of an ILP algorithm to accomplish the mining task at hand heavily af-
fects the whole KDD process. Indeed, D(S) is obtained by selecting and transforming 
the portion of SDB that concerns the set of reference objects S and adding it to the 
BK. Data selection encompasses the retrieval of spatial objects eventually together 
with their spatial and aspatial properties and the extraction of spatial relationships 
between reference objects and task-relevant objects. In particular, SPADA can extract 
topological relations whose semantics has been defined according to the 9-
intersection model [5]. It is noteworthy that finding the right compromise between 
on-line computation (time-consuming solution) and materialization (space-consuming 
solution) of spatial relations is a hot topic in spatial data mining. More sophisticated 
computational solutions are reported in [6, 9]. Once selected, this data needs to be 
transformed in a suitable format. For instance, numerical properties of spatial objects 
with a large domain must be discretized in order to be handled by logic-based data 
mining methods. SPADA currently implements an adaptation of the relative unsuper-
vised discretization algorithm RUDE [10] to the first-order case.  

The spatial data mining step requires the solution to two sub-tasks: 1) Find large 
(or frequent) spatial patterns; 2) Generate strong spatial association rules. The reason 
for this decomposition is that frequent patterns are commonly not considered useful 
for presentation to the user as such. They can be efficiently post-processed into asso-
ciation rules that exceed given threshold values of support and confidence. It is note-
worthy that SPADA, analogously to Geo-Associator but differently from WARMR 
[2], exploits is-a taxonomies for extracting multiple-level patterns and association 
rules. Thus, largeness and strength depend on the level currently explored in the 
hierarchical structure of task-relevant geographic layers. To be more precise, a pattern 
P is large (or frequent) at level l if σ(P)≥minsup[l] and all ancestors of P with respect 
to the spatial hierarchies are large at their corresponding levels. A spatial association 
rule P→Q is strong at level l if the pattern P∪ Q is large and the confidence is high at 
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level l, namely ϕ(Q|P)≥minconf[l]. In SPADA, the counting procedures for support 
and confidence are based on the coverage test of spatial observations, being it the ILP 
counterpart of counting the number of reference objects that satisfy a certain spatial 
pattern. Indeed, the spatial observations are portions of D(S), each of which concerns 
one and only one reference object. Thus, the two percentages associated to P→Q 
mean that s% of spatial observations in D(S) are covered by P∪ Q and c% of spatial 
observations in D(S) that are covered by P are also covered by P∪ Q respectively.  

Further details about representation and algorithmic issues can be found in [12].  

3   An Application to Stockport Census Data 

In some works on spatial representation from the social scientist's perspective, socio-
economic phenomena have been conceptualized as spatial objects in the sense of  
entities having both spatial location and spatially independent attribute characteristics 
[13]. Population data are among the potentially spatial socioeconomic data. They are 
usually geo-referenced with respect to areal spatial objects such as census zones, 
electoral constituencies, local government areas, or regular grid squares. In the UK, 
for instance, the geo-referencing areal units are ED (enumeration district), Ward, 
District, and County. They form a hierarchy based on the inside relationship among 
locations. Thus the ED is the smallest unit for which census data are published nowa-
days. Furthermore, the digital ED boundaries produced for the 1991 UK census en-
able the spatial representation of census data in the computer databases. Generally 
speaking, population censuses of the 1990s provided an added impetus to the applica-
tion of GIS to socioeconomic uses. One of the most interesting topic areas for identi-
fying potential users of such GIS applications is the public debate over Unitary De-
velopment Plans (UDP) in the UK. The district chosen for investigation is Stockport, 
one of the ten Metropolitan Districts of Greater Manchester, UK. It is divided into 
twenty-two wards for a total of 589 EDs. The case study is expected to show the 
potential benefit of data mining methods and techniques to one or more potential 
users. In particular, census data are extremely important for policy analysis and, once 
geo-referenced and conceptualized as spatial objects with numerical aspatial proper-
ties, supply a good test-bed to SPADA. Thus census data (89 tables, each with 120 
attributes in average) and digital ED boundaries have been loaded into an Oracle-
Spatial database, i.e. a relational DBMS extended with spatial data handling facilities. 
The ED code allows the joining of the two kinds of data and the generation of test 
data. 

We have focused our attention on transportation planning, which is one of key is-
sues in the UDP. Let us suppose that some decision-making process about the motor-
way M63 is ongoing. Describing the area of Stockport served by M63 (i.e. the wards 
of Brinnington, Cheadle, Edgeley, Heaton Mersey, South Reddish) may be of support 
to the planners. In this paper we report the preliminary results obtained by applying 
SPADA to the task of discovering multiple-level spatial association rules relating EDs 
intersected by the motorway M63 (S) and all EDs in the area served by M63 (R) to be 
characterized with respect to data about commuting. 
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This spatial data mining query raises several application issues for SPADA. First, 
census data are available at the ED level. Thus, an is-a hierarchy for the Stockport ED 
layer has been obtained by grouping EDs on the basis of the ward they belong to (see 
Figure 1) and expressed as Datalog facts in BK. Indeed, the current version of 
SPADA deals only with is-a hierarchies where the is-a relationship is overloaded, i.e. 
it may stand for kind-of as well as for instance_of depending on the context. Further 
is-a hierarchies could be derived by resorting to clustering algorithms. 

 

 
Second, census data are all numeric (more precisely, integer values). The attributes 

that we have selected for this experiment (see Table 1) refer to residents aged 16 and 
over, thus they have been normalized with respect to the total number of residents 
aged 16 and over (s820001). Each couple of consecutive cut points a and b has gener-
ated an interval of the kind [a..b]. 

Last, some spatial computation is necessary. In particular, the relations of intersec-
tion (EDs-motorways) and adjacency (EDs-EDs) have been extracted as concerns the 
area of interest and transformed into Datalog facts of D(S). It is noteworthy that the 
relations of accessibility and closeness have been defined by means of spatial qualita-
tive reasoning: 

linked_to(X, Y) :- intersect(X, m63), intersect(Y, m63), Y\=X. 
close_to(X, Y) :- adjacent_to(X, Z), adjacent_to(Z, Y), Y\=X. 

These rules have been added to BK together with the aforementioned spatial hierar-
chies and also the spatial constraint: 

ed_on_M63(X) :- intersect(X, m63). 
which defines the instances of S. 

SPADA has been run on the obtained D(S) with thresholds min_sup[1]=0.7 and 
min_conf[1]=0.9 at the first level, and min_sup[2]=0.5 and min_conf[2]=0.8 at the 
second level. The whole discovery process has taken 490.21 sec on a PC Pentium III 
with 128 Mb RAM (37.84 sec for level 1, and 452.31 sec for level 2). It has returned 
744 frequent patterns out of 17619 candidate patterns and 24964 strong rules out of 
40465 generated rules. Some interesting patterns have been discovered. For instance, 
at level l=2 in the spatial hierarchies, the following candidate P: 

ed_on_M63(A), close_to(A,B), is_a(B, south_reddish_ED), linked_to(A,C), C\=B,  
s820161(C, [52.632..54.167]), is_a(C, cheadle_ED) 

has been generated after k=6 refinement steps and has been evaluated with respect to 
D(S). Since six of ten spatial observations (|S |=10) are covered and all the ancestor 

Fig. 1. An is-a hierarchy for the Stockport ED layer 

ED 

bredbury_ED 

fa30 fa01 

brinnington_ED 

fb01 fb23 

west_bramhall_ED 

fx01 fx28 



161      Donato Malerba and Francesca A. Lisi 

patterns are large at their level (l≤2), the pattern is a large one at level l=2 with 60% 
support. For the sake of clarity, the following pattern 

ed_on_M63(A), close_to(A,B), is_a(B, ed_in_M63_area), linked_to(A,C), C\=B, 
s820161(C, [52.632..54.167]), is_a(C, ed_in_M63_area) 

is one of the large ancestors for the pattern P. It has been generated after k=6 refine-
ment steps at level l=1 and is supported by 90% EDs intersected by M63. Such way 
of taking the taxonomies into account during the pattern discovery process imple-
ments what we refer to as the systematic exploration of the hierarchical structure of 
task-relevant geographic layers. Furthermore, the use of both variables and atoms of 
the kind \= allow SPADA to distinguish between multiple instances of the same class 
of spatial objects (e.g. the class ed_in_M63_area).  

Table 1. Numerical attributes in the application to Stockport census data. 

Attribute Description Cut points in the attribute domain 
s820161 Persons who work out of the 

district of usual residence and 
drive to work 

0.0, 6.25, 8.333, 12.973, 17.241, 19.048, 
20.943, 23.529, 25.0, 25.926, 27.586, 
29.032, 29.865, 31.25, 33.333, 34.375, 
36.182, 38.235, 40.0, 42.105, 45.455, 
46.667, 48.194, 50.0, 51.515, 52.632, 
54.167, 56.0, 57.143, 58.333, 58.824, 60.0, 
60.714, 61.538, 63.889, 65.217, 66.667, 
67.742, 69.565, 71.429, 72.902, 100.0 

s820213 Employees and self-employed 
who reside in households with 3 
or more cars and drive to work  

0.0, 2.222, 15.385, 28.0, 29.521, 31.034, 
33.333, 35.068, 37.5, 38.095, 38.889, 
41.043, 42.857, 48.387, 72.727 

s820221 Employees and self-employed 
who reside in households with 3 
or more cars and work out of the 
district of usual residence 

0.0, 2.222, 4.762, 9.091, 10.345, 13.636, 
18.182, 19.355, 21.131, 23.529, 25.0, 
28.571 

One of the strong rules that have been derived from the frequent pattern P is:   
ed_on_M63(A), close_to(A,B), is_a(B,south_reddish_ED) 
→ linked_to(A,C), is_a(C,cheadle_ED), B\=C, s820161(C,[52.632..54.167])  (60%, 100%) 
“GIVEN THAT 60% of EDs intersected by M63 are close to a South Reddish ED and 
are linked via M63 to a Cheadle ED where 52-54% residents aged 16 and over work 
out of the district of usual residence and drive to work, IF an ED intersected by M63 
is close to a South Reddish ED THEN WITH CONFIDENCE 100% it is linked via 
M63 to a Cheadle ED where … ”. 

Other examples of strong rule at the second level are: 
ed_on_M63(A), close_to(A,B), s820221(B,[10.345..13.636]) 

→ linked_to(A,C), is_a(C,brinnington_ED), B\=C  (60%, 86%) 
“GIVEN THAT 60% of EDs intersected by M63 are close to an ED - where 10-13% 
residents aged 16 and over are employees and self-employed who reside in house-
holds with 3 or more cars and work out of the district of usual residence - and are 
linked via M63 to a Brinnington ED distinct from the previous one, IF an ED inter-
sected by M63 is close to an ED where … THEN WITH CONFIDENCE 86% it is 
linked via M63 to a Brinnington ED distinct from the previous one ”. 
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ed_on_M63(A), close_to(A,B), s820221(B,[19.355..21.131])  
 → is_a(B,heaton_mersey_ED) (70%, 100%) 
“GIVEN THAT 70% of EDs intersected by M63 are close to a Heaton Mersey ED  
where 19-21% residents aged 16 and over are employees and self-employed who 
reside in households with 3 or more cars and work out of the district of usual resi-
dence IF an ED intersected by M63 is close to an ED where … THEN WITH 
CONFIDENCE 100% the latter ED belongs to the ward of Heaton Mersey”.  

One may wonder whether these frequent patterns and strong rules convey novel 
knowledge and, in positive case, what kind of knowledge. The evaluation of data 
mining results is beyond the scope of this paper. Nevertheless a naive interpretation 
of results in our application might lead us to state that the motorway M63 intersects 
an area of Stockport which is characterized by a high percentage of commuters by car 
who may benefit from some improvement of the road network.  

4  Conclusions and Future Work 

The work presented in this paper reports an ILP application to spatial association rule 
mining. Experimental results obtained by applying the novel special-purpose ILP 
system SPADA to geo-referenced census data of Manchester Stockport show that the 
expressive power of first-order logic enables us to tackle applications that cannot be 
handled by the traditional approach to spatial data mining. Furthermore, DDBs offer 
effective representation means for domain knowledge, constraints and qualitative 
reasoning. In particular, we can embed rules for the inference of implicit spatial rela-
tionships that are too numerous to be either stored in the spatial database or computed 
by computational geometry algorithms.  

For the near future, we plan to face the issues of efficiency and scalability in 
SPADA. Particular attention will be also drawn on the issue of robustness. Indeed, 
data pre-processing in spatial data mining is remarkably error-prone. For instance, the 
generation of the predicate close_to is based on the user-defined semantics of the 
closeness relation, which should necessarily be approximated. Further work on the 
data selection and transformation is expected to give some hints on noise handling in 
this application domain. As for the test on real-world spatial data sets, much work has 
still to be done. In particular, we are interested in experiments with mixed census-
topographic data because they show that the interpretation of spatial relations can 
change as spatial objects are added. 
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