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Abstract. Model trees are an extension of regression trees that associate leaves 
with multiple regression models. In this paper a method for the top-down 
induction of model trees is presented, namely the Stepwise Model Tree 
Induction (SMOTI) method. Its main characteristic is the induction of trees with 
two types of nodes: regression nodes, which perform only straight-line 
regression, and split nodes, which partition the sample space. The multiple 
linear model associated to each leaf is then obtained by combining straight-line 
regressions reported along the path from the root to the leaf. In this way, 
internal regression nodes contribute to the definition of multiple models and 
have a “global” effect, while straight-line regressions at leaves have only 
“local” effects. This peculiarity of SMOTI has been evaluated in an empirical 
study involving both real and artificial data. 

1 Introduction 

Regression trees are well-known tree-based prediction models for numerical variables 
[1]. As in the case of decision trees, they are generally built top-down by recursively 
partitioning a feature space �� spanned by m independent (or predictor) variables xi 
(both numerical and categorical). The main difference is that the dependent (or 
response) variable y to be predicted is continuous. Therefore, each leaf in the tree is 
associated with a numerical value, and the underlying model function y=g(x) is 
approximated by means of a piecewise constant one. Model trees generalize the 
concept of regression trees in the sense that they approximate the function above by a 
piecewise linear function, that is they associate leaves with multiple models. The 
problem of inducing model trees from a training set has received attention both in 
statistics [2,7,10] and in machine learning. Some of the model tree induction systems 
developed are: M5 [9], RETIS [4], M5' [13], TSIR [5], and HTL [11,12]. In most of 
them the multiple model associated with a leaf is built on the basis of those training 
cases falling in the corresponding partition of the feature space. Therefore, models in 
the leaves have only a “local” validity and do not consider the “global” effects that 
some variables might have in the underlying model function. Such global effects can 
be represented by variables that are introduced in the multiple models at higher levels 
of the model trees. However, this requires a different tree-structure, where internal 
nodes can either define a further partitioning of the feature space or introduce some 
regression variables in the models to be associated to the leaves.      



 

   In this paper we present the current state of the art of the research on top-down 
induction of model trees and we motivate the stepwise construction of models 
associated with the leaves. A new method, named Stepwise Model Tree Induction 
(SMOTI), is presented. SMOTI is characterized by the construction of tree models 
with both regression and split nodes. Regression nodes perform straight-line 
regression, while split nodes partition the sample space. The multiple linear model 
associated with each leaf is obtained by composing the effect of regression nodes 
along the path from the root to the leaf. Therefore, variables of the regression nodes 
selected at higher levels in the tree have a “global” effect, since they affect several 
multiple models associated with the leaves.  

The state of the art of model tree induction is described in the next section, while in 
Section 3 the method SMOTI is introduced, and its computational complexity is 
analyzed. Finally, in Section 4 some experimental results are reported and the trade-
off between “local” and “global” effects is discussed. 

2. Induction of model trees: state of the art 

The induction of model trees can be reformulated as a search problem in the space of 
all possible model trees that can be built with m independent variables. Since an 
exhaustive exploration of this space is not possible in practice, several heuristics 
(evaluation functions) have been proposed to solve this problem. In CART [1], the 
quality of the (partially) constructed tree T is assessed by means of the mean square 
error R*(T), whose sample estimate is: 
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where N is the number of training examples (xi, yi), T
~

is the set of leaves of the tree, 
and )(ty  is the sample mean of the response variable, computed on the observations 

in the node t. By denoting with R(t) and s2(t) the resubstitution estimate of risk and the 
sample variance at a node t, respectively, R(T) can be rewritten as: 
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where N(t) is the number of observations in the node t and p(t) is the probability that a 
training case reaches the leaf t. When the observations in a leaf t are partitioned into 
two groups, we obtain a new tree T', where t is an internal node with two children, 
say, tL  and tR. Different splits generate distinct trees T', and the choice of the best split 
is made by minimizing the corresponding R(T'), that is, by minimizing p(tL)s

2(tL)+ 
p(tR)s

2(tR), the contribution to R(T') given by the split.  
This heuristic criterion, initially conceived for regression trees, has also been used 

for model trees. In the system HTL the evaluation function is the same as that 
reported above, while in M5 the sample variance s2(t) is substituted by the sample 
standard deviation s(t). The problem with these evaluation functions, when used in 
model tree induction, is that they do not take into account the models associated with 
the leaves of the tree. In principle, the optimal split should be chosen depending on 
how well each model fits the data. In practice, many model tree induction systems 



 

choose the optimal split on the basis of the spread of observations with respect to the 
sample mean. However, a model associated with a leaf is generally more 
sophisticated than the sample mean. Therefore, the evaluation function is incoherent 
with respect to the model tree being built. Consequently, the induced tree may fail to 
discover the underlying model, as exemplified in [6]. This problem is due to the neat 
separation of the splitting stage from the predictive one. The partitioning of the 
feature space (splitting stage) does not take into account the multiple regression 
models that can be associated with the leaves. Moreover, the association of models 
with the leaves (prediction stage) takes place only when the partition of the feature-
space has been fully defined; therefore, it is difficult to establish whether a variable 
has a more global effect involving several regions of the feature space.  

This problem does not occur in regression tree induction, since the models are the 
sample means which are used in the computation of R(T). Moreover, the choice of a 
constant function (the sample mean) as the type of model in the leaves explicitly 
prevents the differentiation between global and local effects of variables in the 
models. For different reasons, the same problem cannot potentially occur in RETIS, 
whose heuristic criterion is to minimize p(tL)s

2(tL)+ p(tR)s
2(tR), where s2(tL) (s2(tR)) is 

now computed as the mean square error with respect to the regression plane gL (gR) 
found for the left (right) child: 
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In practice, for each possible partitioning the best regression planes at leaves are 
chosen, so that the selection of the optimal partitioning can be based on the result of 
the prediction stage.  

The weakness of the RETIS heuristic evaluation function is its high computational 
complexity, especially when all independent variables are continuous. In particular, it 
can be proven that the choice of the first split takes time O(N(N-1)m(m+1)2), which is 
cubic in m and square in N [6]. In addition to the high computational cost, RETIS is 
characterized by models that can take into account only local decisions.  

A solution to both problems is the stepwise construction of multiple linear models 
by intermixing regression steps with partitioning steps, as done in TSIR. TSIR has 
two types of node: split nodes and regression nodes. The former perform a boolean 
test on a variable and have two children. The latter compute a single variable 
regression, Y = a+bX, and pass down to its unique child the residuals yi - (a+bxi) as 
new values of the response variable. Thus, descendants of a regression node will 
operate on a modified training set. Lubinsky claims that “each leaf of the TSIR tree 
corresponds to a different multiple linear regression,” and that “each regression step 
adds one variable and its coefficients to an incrementally growing model” [5].  

However, this interpretation is not correct from a statistical point of view, since the 
incremental construction of a multiple linear regression model is made by removing 
the linear effect of the introduced variables each time a new independent variable is 
added to the model [3]. For instance, let us consider the problem of building a 
regression model Y=a+bX1+cX2 through a sequence of straight-line regressions. We 
start regressing Y on X1, so that the model Y = a1+b1X1  is built. This fitted equation 
does not predict Y exactly. By adding the new variable X2, the prediction might 
improve. Instead of starting from scratch and building a model with both X1 and X2, 
we can build a linear model for X2 given X1:  



 

X2 = a2+b2X1,  
then compute the residuals on X2:  

X'2 = X2 - (a2+b2X1), 
and finally regress Y on X'2 alone:  

Y = a3 + b3X'2.  
By substituting the equation of X'2 in the last equation we have: 

Y = a3 + b3X2 -a2b3-b2b3X1. 
It can be proven that this last model coincides with the first model built, that is  

a=a3-a2b3, b=-b2b3 and c=b3. Therefore, when the first regression line of Y on X1 is 
built we do not pass down the residuals of Y but the residuals of the regression of X2 
on X1. This means we remove the linear effect of the variables already included in the 
model (X1) from those variables to be selected for the next regression step (X2). TSIR 
operates in a different way, so that it is not possible to assert that the composition of 
straight-line models found along a path from the root to a leaf is equivalent to a 
multiple linear model associated with the leaf itself. In fact, the only correct 
interpretation is that the subtree of a regression node is in turn a model tree that aims 
at predicting the residuals of the regression performed in the node.  

The above problem does not occur in the system SMOTI, which removes the 
effect of the variable selected by a regression node before passing down training cases 
to deeper levels. However, this adjustment must be accompanied by a look-ahead 
strategy when regression nodes and split nodes are compared for selection. This has 
been also taken into account in the design of SMOTI, as explained in the next section.    

3. Induction of model trees in SMOTI 

In SMOTI, the development of a tree structure is not only determined by a 
recursive partitioning procedure, but also by some intermediate prediction functions. 

This means that there are two types of node in the tree: regression nodes and split 
nodes. The former performs only straight-line regressions, while the latter partitions 
the feature space. They pass down observations to their children in two different 
ways. For a split node t, only a subgroup of the N(t) observations in t is passed to each 
child, and no change is made on the variables. For a regression node t, all the 
observations are passed down to its only child, but the values of the independent 
variables not included in the model are transformed, to remove the linear effect of 
those variables already included. Thus, descendants of a regression node will operate 
on a modified training set.  

The validity of either a regression step on a variable Xi or a splitting test on the 
same variable is based on two distinct evaluation measures, �(Xi,Y) and �(Xi,Y) 
respectively. The variable Xi is of a continuous type in the former case, and of any 
type in the latter case. Both �(Xi,Y) and �(Xi,Y) are mean square errors,1 therefore they 

                                                           
1 This is different from TSIR, which minimizes the absolute deviation between a median (the 
model) and the Y values of the cases. Actually, the minimization of absolute deviation is more 
robust with respect to the presence of outliers and skewed distributions. However, SMOTI 
coherently minimizes the least squares both when a straight-line regression has to be built and 
when two different alternatives have to be compared. 



 

can be actually compared to choose between either growing the model tree by adding 
a regression/split node t, or stopping the tree’s growth at node t. 

As pointed out in Section 2, the evaluation measure �(Xi,Y) should be coherently 
defined on the basis of the multiple linear model to be associated with each leaf. In 
the case of SMOTI it is sufficient to consider a straight-line regression associated with 
each leaf tR (tL), since regression nodes along the path from the root to tR (tL) already 
define partially a multiple regression model (see Figure 1a-b). 

If Xi is continuous and � is a threshold value for Xi then �(Xi,Y) is defined as: 
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where N(t) is the number of cases reaching t,  N(tL) (N(tR)) is the number of cases 
passed down to the left (right) child, and R(tL) ( R(tR) ) is the resubstitution error of 
the left (right) child, computed as follows: 
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regression associated with the leaf tL (tR) with all univariate regression lines 
associated with regression nodes along the path from the root to tL (tR). 

If Xi is discrete, SMOTI partitions attribute values into two sets, so that binary trees 
are always built. Partitioning is based on the same criterion applied in CART [1, pp. 
247], which reduces the search for the best subset of categories from 2k-1 to k-1, where 
k is the number of distinct values for Xi.  

The evaluation of the effectiveness of a regression step Y=a+bXi at node t cannot 
be naïvely based on the resubstitution error R(t): 
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where the estimator jŷ  is computed by combining the straight-line regression 

associated with t with all univariate regression lines associated with regression nodes 
along the path from the root to t. This would result in values of �(Xi,Y) less than or 
equal to values of �(Xi,Y) for some splitting test involving Xi. Indeed, the splitting test 
“looks-ahead” to the best multiple linear regressions after the split on Xi is performed, 
while the regression step does not. A fairer comparison would be growing the tree at a 

   Fig. 1. a) A continuous split node. b) A discrete split node. c) An example of regression node.  
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further level in order to base the computation of �(Xi,Y) on the best multiple linear 
regressions after the regression step on Xi is performed (see Figure 1c).  

Let t’  be the child of the regression node t, and suppose that it performs a splitting 
test. The best splitting test in t’  can be chosen on the basis of �(Xj,Y) for all possible 
variables Xj, as indicated above. Then �(Xi,Y) can be defined as follows: 

�(Xi,Y) = min { R(t), �(Xj,Y) for all possible variables Xj }. 

Having defined both �(Xi,Y) and �(Xi,Y), the criterion for selecting the best node is 
fully characterized as well. A weight w (1-w) is associated with split (regression) 
nodes, so as to express the user preference for model trees with splitting tests 
(regression steps). Therefore, SMOTI actually compares the weighted values w�(Xi,Y) 
and (1-w)�(Xi,Y) while selecting a node. At each step of the model tree induction 
process, SMOTI chooses the apparently most promising node according to a greedy 
strategy. A continuous variable selected for a regression step is eliminated from 
further consideration, so that it can appear only once in a regression node along a path 
from the root to a leaf.   

In SMOTI three different stopping criteria are implemented. The first uses the 
partial F-test to evaluate the contribution to the model of a new independent variable 
[3]. The second requires the number of cases in each node to be greater than a 
minimum value. The third stops the induction process when all continuous variables 
along the path from the root to the current node are used in regression steps and there 
are no discrete variables in the training set.   

The computational complexity of the model tree induction algorithm is highly 
dependent on the choice of the best splitting test or regression step for a given node. 
For regression steps, the worst case complexity is O(NmlogN), where N is the number 
of examples in the training set and m is the number of independent variables. For 
splitting tests, the worst case complexity is O(N+NlogN), where the component 
NlogN is due to the quicksort algorithm. Therefore, the worst case complexity for the 
selection of any node is O(Nm2 logN), since there are m independent variables.  

It is noteworthy that SMOTI is more efficient than RETIS at building model trees 
and defines the best partitioning of the feature space coherently with respect to the 
model tree being built. Moreover, the use of both regression and split nodes permits 
the system to consider both global and local effects of variables in the various 
regression models. This is evident in the experimental results reported below.      

4. Experimental results and discussion  

SMOTI has been implemented as a module of the knowledge discovery system 
KDB2000 (www.di.uniba.it/~malerba/software/kdb2000/) and has been empirically 
evaluated on six datasets taken from UCI Machine Learning Repository 
(www.ics.uci.edu/~mlearn/MLRepository.html) and the site of the system HTL 
(www.ncc.up.pt/~ltorgo/Regression/DataSets.html). They are: a) Abalone, with 2889 cases 
and 8 attributes (7 continuous and 1 discrete); b) Auto with 398 cases and 8 attributes 
(5 continuous and 3 discrete); c) Housing with 506 cases and 14 continuous attributes; 
d) Machine CPU with 209 cases and 6 discrete attributes; e) Pyrimidines with 74 
cases and 27 continuous attributes; f) Price with 159 cases and 16 attributes (15 



 

continuous and 1 discrete). Each dataset is analyzed by means of a 10-fold cross-
validation, that is, the dataset is first divided into ten blocks of near-equal size and 
with near-equal distribution of class values, and then, for every block, SMOTI is 
trained on the remaining blocks and tested on the hold-out block. The system 
performance is evaluated on the basis of both the average resubstitution error and the 
average number of leaves. For pairwise comparison of methods, the non-parametric 
Wilcoxon signed rank test is applied [8], where the summations on both positive and 
negative ranks, namely W+ and W-, are used to determine the winner. In all 
experiments reported in this empirical study, the significance level � is set to 0.05. 

4.1 Effect of node weighting 

The first experiment aims at investigating the effect of node weighting on the 
predictive accuracy and complexity of the tree. A weight greater than 0.5 prefers 
splitting tests, while a weight lower than 0.5 favors the selection of regression nodes.  
It is noteworthy that, for higher weight values, regression nodes are often selected 
near the leaves of the tree, so that they can give only a local contribution to the 
approximation of the underlying function with a model tree. On the contrary, for 
lower values of the weight regression node they tend to be selected at the root, so that 
they give a global contribution to the approximation of the underlying function. In 
other words, the weight represents the trade-off between global regression models that 
span the whole feature space and are built using all training cases and local regression 
models, which fit fewer data falling in smaller portions of the feature space. 

The weighting factor also affects the predictive accuracy of the induced model, as 
reported in Table 1. In each of the ten trials per dataset, predictive accuracy is 
estimated by the mean square error, computed on the corresponding validation set. 
Experimental results show that by increasing the weight, that is favoring the selection 
of split nodes, it is possible to obtain more accurate model trees. Moreover, we also 
observed that for weight values higher than 0.6 the situation does not change with 
respect to the case w=0.6, while for weight values lower than 0.5 the accuracy is 
lower than that observed with w=0.5. The conclusion is that, in almost all the data sets 
considered, local effects of regression variables are preferred. 

Table 1. Results of the Wilcoxon signed rank test on the accuracy of the induced model. The 
best value is in boldface, while the statistically significant values (p����) are in italics 

SMOTI has also been compared to two other TDMTI systems, namely a trial 
version of Cubist and M5'. Experimental results, which are reported in [6] and are 
unfavorable to SMOTI, seem to confirm the presence of a common factor to many of 

0.5 vs 0.52 0.5 vs 0.56 0.5 vs 0.6 Data set 
p W+ W- P W+ W- p W+ W- 

Abalone 0.083 45 10 0.004 54 1 0.004 54 1 
Auto 0.556 34 21 0.492 35 20 1.000 28 27 

Housing 0.492 20 35 0.275 39 16 0.432 36 19 
Machine 0.064 46 9 0.064 46 9 0.064 46 9 

Price 0.083 45 10 0.232 40 15 0.432 36 19 
Pyrimidines 0.002 55 0 0.106 11 44 0.064 46 9 



 

the data sets used in the experiments on regression and model trees: no general 
behavior was noted for the underlying function to be approximated, and it can be 
better represented as a composition of many definite local behaviors. 

4.2 Experiments on artificial data sets 

SMOTI was also tested on artificial data sets randomly generated for seven different 
model trees. These model trees were automatically built for learning problems with 
nine independent variables (five continuous and four discrete), where continuous 
variables take values in the unit interval [0,1], while discrete variables take values in 
the set {A,B,C,D,E,F,G}. The model tree building procedure is recursively defined on 
the maximum depth of the tree to be generated. The choice of adding a regression or a 
split node is random and depends on a parameter ��[0,100]: the probability of 
selecting a split node is �%; conversely, the probability of selecting a regression node 
is (100-�)%. Therefore, the returned model trees have a variable number of 
regression/split nodes and leaves, while the depth of the tree is kept under control. In 
the experiments reported in this paper � is fixed to 0.5, while the depth is set to 5. 

Ten data points are randomly generated for each leaf, so that the size of the data set 
associated with a model tree depends on the number of leaves in the tree itself. Data 
points are generated according to the different multiple linear models associated with 
the leaves. The error added to each model is distributed normally, with zero mean and 
variance �2, which is kept constant for all leaves. The value of �

2 set for the 
experimentation is 0.001, which means that for almost 90% of generated data points 
the effect of the error is 	0.095, according to Chebyshev’s inequality. It is noteworthy 
that the effect of the error is not marginal, given that both independent variables and 
their coefficients range in the unit interval.  

Each dataset was analyzed by means of a 10-fold cross-validation. In order to study 
the effect of the weight, two different values were considered: w=0.5 and w=0.55. 
Experimental results are reported in Table 2. The number of leaves of the original 
model trees  (T. #leaves) is compared to the corresponding property of the induced 
tree (denoted by the initial I).The last three columns list the average mean square error 
reported by SMOTI and M5´. Results show that SMOTI over-partitions the feature 
space, since the number of leaves in the induced trees is always greater than the 
number of leaves in the theoretical model tree. This is true even in the case of w=0.5. 
Interestingly, in many cases SMOTI outperforms M5´ with respect to average MSE. 

Table 2.  Results for the model tree built with parameters �=0.5, depth=5, and �2=0.001. 

T. 
depth 

T. # 
leaves 

I. # leaves 
w=0.5 

I. # leaves 
w=0.55 

Av. MSE 
SMOTI w=0.5 

Av. MSE 
SMOTI w=0.55 

Av. MSE. 
M5’ 

5 5 7 9 0.24 0.61 0.35 
5 7 10 10 0.2 0.15 0.36 
5 8 11 12 0.19 0.17 0.3 
5 6 10 10 0.53 0.32 0.27 
5 8 12 10 0.56 0.68 0.24 
5 1 1 1 0.16 0.16 0.29 
5 6 17 18 0.15 0.16 0.25 



 

Results on a more extensive experimentation are reported in Table 3. They are 
obtained by keeping �=0.5, �2=0.001, and by varying both the number of training 
cases per leaf (10, 20, 30 items) and the depth of the tree (5,6,7). Three main 
conclusions can be drawn from Table 4: first, SMOTI performs better than M5
 when 
split nodes are slightly preferred to regression nodes, that is, local decisions are 
favored; second, by increasing the number of training cases per leaf, no difference is 
observed in the trading-off between local and global effects2; third, the depth of the 
tree has no clear effect on the predictive accuracy of the induced model tree.   

Table 3. Results of the Wilcoxon signed rank test on the accuracy of the induced model tree 
built with parameters �=0.5 and �2=0.001. The best value is in boldface, while the statistically 
significant values (p����) are in italics. 

M5' vs. SMOTI (w=0.5) M5' vs. SMOTI (w=0.55) 
Data set Depth 

P W+ W- p W+ W- 
5 0.937 15 13 1 14 14 
6 0.46 9 19 0.937 13 15 

10 items 
per leaf 

7 0.078 3 25 1 14 14 
5 0.047 2 26 0.6875 17 11 
6 0.047 2 26 0.07812 25 3 

20 items 
per leaf 

7 0.93 13 15 0.2969 21 7 
5 1 14 14 0.375 20 8 
6 0.218 6 22 0.5781 18 10 

30 items 
per leaf 

7 0.687 11 17 0.0312 27 1 

5. Conclusions 

In the paper, a novel method, called SMOTI, has been presented. The main advantage 
of SMOTI is that it efficiently generates model trees with multiple regression models 
in the leaves. Model trees generated by SMOTI include two types of nodes: 
regression nodes and split node. A weight associated to the type of node permits the 
user to express a preference for either local regression or global regression.  

Experimental results on UCI data sets proved that in most of them, local effects of 
regression variables are preferred. An empirical comparison with M5´ on artificial 
data sets proved that SMOTI could induce more accurate model trees when both 
global and local behaviors are mixed up in the underlying model. In the future, we 
plan to investigate the effect of pruning model trees. To date, no study on the 
simplification techniques for model trees has been presented in the literature. There 
are several possible approaches, some based on the direct control of tree size, and 
others based on the extension of the set of tests considered. Both a theoretical and an 
empirical evaluation of these approaches in terms of accuracy and interpretability 
would be helpful in practical applications. 

                                                           
2 In a personal communication, Tom Mitchell hypothesized that the importance of taking into 

account “global” effects might vanish with larger training sets. This hypothesis is not evident 
in our results.     
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