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Abstract. Layout analysis is the process of extracting a hierarchical structure 
describing the layout of a page. In the document processing system 
WISDOM++ the layout analysis is performed in two steps: firstly, the global 
analysis determines possible areas containing paragraphs, sections, columns, 
figures and tables, and secondly, the local analysis groups together blocks that 
possibly fall within the same area. The result of the local analysis process 
strongly depends on the quality of the results of the first step. In this paper we 
investigate the possibility of supporting the user during the correction of the 
results of the global analysis. This is done by allowing the user to correct the 
results of the global analysis and then by learning rules for layout correction 
from the sequence of user actions. Experimental results on a set of multi-page 
documents are reported.  

1 Background and motivations 

Processing document images, that is bitmaps of scanned paper documents, is a 
complex task involving many activities, such as preprocessing, segmentation, layout 
analysis, classification, understanding and text extraction [6]. Those activities are all 
important, although, the extraction of the right layout structure is deemed the most 
critical. Layout analysis is the perceptual organization process that aims at detecting 
structures among blocks extracted by the segmentation algorithm. The result is a 
hierarchy of abstract representations of the document image, called the layout 
structure of the document. The leaves of the layout tree (lowest level of the 
abstraction hierarchy) are the blocks, while the root represents the set of pages of the 
whole document. A page may include several layout components, called frames, 
which are rectangular areas corresponding to groups of blocks.    

Strategies for the extraction of layout analysis have been traditionally classified as 
top-down or bottom-up [10]. In top-down methods, the document image is repeatedly 
decomposed into smaller and smaller components, while in bottom-up methods, basic 
layout components are extracted from bitmaps and then grouped together into larger 
blocks on the basis of their characteristics. In WISDOM++ 
(www.di.uniba.it/~malerba/wisdom++/), a document image analysis system that can 
transform paper documents into either HTML or XML format [1], the applied page 
decomposition method is hybrid, since it combines a top-down approach to segment 
the document image, and a bottom-up layout analysis method to assemble basic 
blocks into frames. 



 

Some attempts of learning the layout structure from a set of training examples have 
also been reported in the literature [2,3,4,8,11]. They are based on ad-hoc learning 
algorithms, which learns particular data structures, such as geometric trees and tree 
grammars. Results are promising although it has been proven that good layout 
structures could also be obtained by exploiting generic knowledge on typographic 
conventions [5]. This is the case of WISDOM++, which analyzes the layout in two 
steps: 
1. A global analysis of the document image, in order to determine possible areas 

containing paragraphs, sections, columns, figures and tables. This step is based on 
an iterative process, in which the vertical and horizontal histograms of text blocks 
are alternately analyzed, in order to detect columns and sections/paragraphs, 
respectively.  

2. A local analysis of the document to group together blocks that possibly fall within 
the same area. Generic knowledge on west-style typesetting conventions is 
exploited to group blocks together, such as “the first line of a paragraph can be 
indented” and “in a justified text, the last line of a paragraph can be shorter than 
the previous one”. 
Experimental results proved the effectiveness of this knowledge-based approach on 

images of the first page of papers published in either conference proceedings or 
journals [1]. However, performance degenerates when the system is tested on 
intermediate pages of multi-page articles, where the structure is much more variable, 
due to the presence of formulae, images, and drawings that can stretch over more than 
one column, or are quite close. The main source of the errors made by the layout 
analysis module was in the global analysis step, while the local analysis step 
performed satisfactorily when the result of the global analysis was correct. 

In this paper, we investigate the possibility of supporting the user during the 
correction of the results of the global analysis. This is done by means of two new 
system facilities: 
1. the user can correct the results of the layout analysis by either grouping or splitting 

columns/sections, automatically produced by the global analysis; 
2. the user can ask the system to learn grouping/splitting rules from his/her sequence 

of actions correcting the results of the layout analysis.  
The proposed approach is different from those that learn the layout structure from 

scratch, since we try to correct the result of a global analysis returned by a bottom-up 
algorithm. Furthermore, we intend to capture knowledge on correcting actions 
performed by the user of the document image processing system. Other document 
processing systems allow users to correct the result of the layout analysis; 
nevertheless WISDOM++ is the only one that tries to learn correcting actions from 
user interaction with the system.  

In the following section, a description of the layout correction operations is 
reported, and the automated generation of training examples is explained. Section 3 
briefly introduces the learning system used to generate layout correction rules and 
presents some preliminary experimental results.  



 

2 Correcting the results of the global analysis 

Global analysis aims at determining the general layout structure of a page and 
operates on a tree-based representation of nested columns and sections. The levels of 
columns and sections are alternated, which means that a column contains sections, 
while a section contains columns. At the end of the global analysis, the user can only 
see the sections and columns that have been considered atomic, that is, not subject to 
further decomposition (Figure 1). The user can correct this result by means of three 
different operations: 
� Horizontal splitting: a column/section is cut horizontally. 
� Vertical splitting: a column/section is cut vertically. 
� Grouping: two sections/columns are merged together.  

The cut point in the two splitting operations is automatically determined by 
computing either the horizontal or the vertical histogram on the basic blocks returned 
by the segmentation algorithm. The horizontal (vertical) cut point corresponds to the 
largest gap between two consecutive bins in the horizontal (vertical) histogram. 
Therefore, splitting operations can be described by means of a binary function, 
namely, split(X,S), where X represents the column/section to be split, S is an ordinal 
number representing the step of the correction process and the range of the split 
function is the set {horizontal, vertical, no_split}.   

The grouping operation, which can be described by means of a ternary predicate 
group(A,B,S), is applicable to two sections (columns) A and B and returns a new 
section (column) C, whose boundary is determined as follows. Let (leftX, topX) and 
(bottomX, rightX) be the coordinates of the top-left and bottom-right vertices of a 

Fig. 1. Results of the global analysis process: one column (left) includes two sections (right). 
The result of the local analysis process (i.e., the frames) is in reported the background. 



 

column/section X, respectively.1 Then: 

leftC= min(leftA, leftB),  rightC=max(rightA,rightB), 
topC=min(topA,topB),  bottomC=max(bottomA,bottomB). 

Grouping is possible only if the following two conditions are satisfied: 
1. C does not overlap another section (column) in the document. 
2. A and B are nested in the same column (section). 

After each splitting/grouping operation, WISDOM++ recomputes the result of the 
local analysis process, so that the user can immediately perceive the final effect of the 
requested corrections and can decide whether to confirm the correction or not. 

From the user interaction, WISDOM++ implicitly generates some training 
observations describing when and how the user intended to correct the result of the 
global analysis. These training observations are used to learn correction rules of the 
result of the global analysis, as explained below. 

3 Learning rules for layout correction 

The inductive learning problem to be solved concerns the concepts 
split(X,S)=horizontal, split(X,S)=vertical and group(X,Y,S)=true, since we are 
interested to find rules predicting both when to split horizontally/vertically a 
column/section and when to group two columns/sections. No rule is generated for the 
case split(X,S)=no_split and group(X,Y,S)=false.  

The definition of a suitable representation language for the global layout structure 
is a key issue. In this work, we restrict this representation to the lowest column and 
section levels in the tree structure extracted by the global analysis and we deliberately 
ignore other levels as well as their composition hierarchy. Nevertheless, describing 
this portion of the layout structure is not straightforward, since the columns and 
sections are spatially related and the feature-vector representation typically adopted in 
statistical approaches cannot render these relations. In this work the application of a 
first-order logic language has been explored. In this language, unary function 
symbols, called attributes, are used to describe properties of a single layout 
component (e.g., height and width), while binary predicate and function symbols, 
called relations, are used to express spatial relationships among layout components 
(e.g., part_of and on_top). An example of a training observation automatically 
generated by WISDOM++ follows: 
split(c1,s)=horizontal, group(s1,s2,s)=false, 
split(s1,s)=no_split, split(s2,s)=no_split � 

step(s)=1,  
type(s1)=section, type(s2)=section, type(c1)=column, 
width(s1)=552, width(s2)=552, width(c1)=552,  
height(s1)=8, height(s2)=723, height(c1)=852, 
x_pos_centre(s1)=296, x_pos_centre(s2)=296, 
x_pos_centre(c1)=296, 

                                                           
1 The origin of the coordinate system is at the top left-hand corner; the abscissa increases from 

the leftmost to the rightmost column, while the ordinate increases from the uppermost to the 
lowest row. 



 

y_pos_centre(s1)=22, y_pos_centre(s2)=409, 
y_pos_centre(c1)=426, 
on_top(s1,s2)=true,  
part_of(c1,s1)=true, part_of(c1,s2)=true, 
no_blocks(s1)=2, no_blocks(s2)=108, no_blocks(c1)=110, 
per_text(s1)=100, per_text(s2)=83, per_text(c1)=84. 

This is a multiple-head ground clause, which has a conjunction of literals in the 
head. It describes the first correction applied to a page layout, where two sections and 
one column were originally found (Figure 1). The horizontal splitting of the column is 
the first correction performed by the user (Figure 2), as described by the first literal, 
namely step(s)=1. This column is 552 pixels wide and 852 pixels high, has a center 
located at the point (296,426), and includes 110 basic blocks and the two sections s1 
and s2, which are one on top of the other. The percentage of the area covered by text 
blocks, enclosed by the column, is 84%. It is noteworthy that the multiple-head clause 
above also reports that the two sections s1 and s2 should be neither split (literals 
split(s1,s)=no_split and split(s2,s)=no_split) nor grouped (literal 
group(s1,s2,s)=false) at the first correction step. Many other literals, such as 
group(c1,s2,s)=false, group(s1,c1,s)=false, and group(c1,c1,s)=false, have not been 
generated, since they do not represent admissible groupings according to the two 
constraints specified above.  

Rules for the automated correction of the layout analysis can be automatically 
learned by means of a first-order learning system. In this work, the learning system 
ATRE has been used [9]. It solves the following learning problem: 

Fig. 2. Horizontal split of the column (left) and vertical split of column c2 (right). The result 
of the layout analysis process is in the background.  



 

Given 
� a set of concepts C1, C2, �, Cr to be learned, 
� a set of observations O described in a language LO, 
� a background knowledge BK described in a language LBK, 
� a language of hypotheses LH, 
� a generalization model � over the space of hypotheses,  
� a user’s preference criterion PC, 
Find 
a (possibly recursive) logical theory T for the concepts C1, C2, �, Cr, such that T is 
complete and consistent with respect to O and satisfies the preference criterion PC. 

The completeness property holds when the theory T explains all observations in O 
of the r concepts Ci, while the consistency property holds when the theory T explains 
no counter-example in O of any concept Ci. The satisfaction of these properties 
guarantees the correctness of the induced theory with respect to O. 

In ATRE, observations are represented by means of ground multiple-head clauses, 
called objects. All literals in the head of the clause are called examples of the concepts 
C1, C2, �, Cr. They can be considered either positive or negative according to the 
learning goal. In this application domain, the set of concepts to be learned are 
split(X,S)=horizontal, split(X,S)=vertical, group(X,Y,S)=true, since we are interested 
in finding rules which predict when to split horizontally/vertically or when to group 
two columns/sections. Therefore, no rule is generated for the case split(X,S)=no_split 
and group(X,Y,S)=false. Moreover, no background knowledge is available.  

The generalization model provides the basis for organizing the search space, since 
it establishes when a hypothesis explains a positive/negative example and when a 
hypothesis is more general/specific than another. The generalization model adopted 
by ATRE, called generalized implication, is explained in [7].  

The preference criterion PC is a set of conditions used to discard some solutions 
and favor others. In this work, short rules, which explain a high number of positive 
examples and a low number of negative examples, are preferred. 

4 Experimental results 

To investigate the applicability of the proposed solution we considered thirteen papers 
published as either regular or short, in the IEEE Transactions on Pattern Analysis and 
Machine Intelligence, issues of January and February 1996. Each paper is a multi-
page document; therefore we processed 109 document images in all, which were used 
for the training phase. The distribution of pages used for training purposes is reported 
in Table 1. 

The number of training observations for ATRE corresponds to the final, corrected 
layout of each page (i.e., 109), plus the number of intermediate global layout 
structures, which are subject to corrections (i.e., 106). The total number of examples 
in the 215 training observations is 7786, which corresponds to the total number of 
literals in the multiple-head clauses. Given the set of concepts to be learned, only 106 
out of 7786 examples are positive, which correspond to actual corrective actions 
performed by the user (vertical/horizontal splitting or grouping). The average number 



 

of corrections performed by the user is 0.97 (i.e., 106/109) per page. In fact, some 
intermediate pages of multi-page documents are the most critical and may require 
several operations to correct the column/section structure. 

Table 1. Training set: Distribution of pages and examples per document. 

Name of the multi-
page document 

No. of 
pages 

No. of 
horizontal splits 

No. of  
vertical splits 

No. of 
groupings 

Total no. of 
examples 

TPAMI1 14 6 5 4 1004 
TPAMI2 8 4 5 0 374 
TPAMI5 6 1 3 0 402 
TPAMI6 2 0 0 1 83 
TPAMI7 7 0 0 1 328 
TPAMI8 6 2 1 2 526 
TPAMI9 5 1 1 0 114 
TPAMI14 10 3 4 12 1035 
TPAMI15 15 9 10 0 806 
TPAMI16 14 1 4 2 965 
TPAMI18 10 2 8 4 1464 
TPAMI22 5 2 2 0 181 
TPAMI23 7 3 2 1 504 
Total (training) 109 34 45 27 7786 

  
 
ATRE generated a theory with 44 clauses:  19 for vertical split, 11 for horizontal 

split and 14 for grouping. Some clauses for the three concepts are reported below:  
1. split(X1,S)=horizontal � width(X1) �[540..567], 

height(X1) �[848..875], step(S) �[1..1] 
2. split(X1,S)=vertical � width(X1) �[536..581], 

on_top(X1,X2)=true, x_pos_centre(X1) �[467..467], 
step(S) �[1..1] 

3. group(X1,X2,S)=true � width(X1) �[408..513], 
type(X1)=column, step(S) �[1..6], type(X2)=column  

The interpretation of these clauses is straightforward. The first clause states that «at 
the first correction step, columns/areas with width between 540 and 567 pixels and 
height between 848 and 875 pixels should be horizontally split». The second clause 
states that «at the first correction step, columns/areas with a width between 536 and 
581 pixels, the baricentre at point 467 on the x axis and below another column/area 
should be vertically split». Finally, the third clause states that «at any step between 1 
and 6, two columns can be grouped if the left one2 has a width between 408 and 513». 
It is noteworthy that the second clause involves the relation on_top and could be 
generated only by learning systems that operate on first-order logic descriptions, such 
as ATRE.  

From the examples above, it is evident that some of the induced clauses (e.g., the 
second) are clearly specific and have been generated by the system to explain a 
limited number of examples (sometimes only one). Specificity of clauses is due to 

                                                           
2 In this case the area is necessarily a column, since users can only group two columns or two 

sections. 



 

two factors: firstly, the limited number of positive examples used in the training set, 
and secondly, the fact that ATRE is asked to generate a complete theory, that is a set 
of clauses that explain all positive examples. However, other clauses generated by 
ATRE are quite general, such as the first example above.  

WISDOM++ uses the induced rules to automatically correct a page layout every 
time a document image is processed. This operation is quick and totally transparent to 
the user. Data on the test set are reported in Table 2. They refer to ten additional 
papers published in the issues of January and February 1996 of the IEEE Transactions 
on Pattern Analysis and Machine Intelligence. Results of the test examples are 
reported in Table 3. Omission errors occur when correct actions on page layout are 
missed, while commission errors occur when wrong actions are “recommended” by a 
rule. In the case of horizontal (vertical) split, the number of possible commission 
errors, that is, 3189 (3200), is the sum of the number of examples of vertical 
(horizontal) split plus the number of no split, that is, 3153. In the case of grouping, 
possible commission errors equals the number of examples of grouping(X,Y,S)=false. 

Table 2. Testing set: Distribution of pages and examples per document. 

Name of the multi-
page document 

No. of 
pages 

No. of 
horizontal splits 

No. of  
vertical splits 

No. of 
groupings 

Total no. of 
examples 

Total (testing) 109 47 36 12 7376 

Table 3. Commission and omission errors performed by rules of various concepts. 

Rule for No. omission errors No. commission errors  
split(X,S)=horizontal 18/47 5/3189 
split(X,S)=vertical 10/36 5/3200 
grouping(X,Y,S)=true 10/12 14/4128 

 
Unfortunately, the induced set of clauses missed most of the grouping operations, 

whereas it was able to correct some page layouts by performing horizontal and 
vertical splitting. The percentage of commission errors is very low, whereas the 
percentage of omission errors is quite high. This confirms our comments on the 
specificity of part of the learned theory, due to the reduced number of training 
observations with respect to the complexity of the learning task. It is also noteworthy 
that most of the errors occurred in few pages, where the correction process was quite 
complex. 

5 Conclusions 

This work presents a preliminary application of machine learning techniques to the 
problem of correcting the result of the global layout analysis process in WISDOM++. 
The proposed approach is alternative to inducing the complete layout structure from a 
set of training examples The learning problem to be solved has been introduced and 
the first-order logic representation of the corrections performed by the user has been 
illustrated. Experimental results on a set of multi-page documents showed that the 
proposed approach is able to capture relatively simple layout corrections. Inaccuracy 
for complex processes can be mainly attributed to the limited size of training 



 

documents. A more extensive experimentation is planned to confirm these initial 
conclusions. A further research issue to be investigated concerns the application of a 
learning system like ATRE, devised to solve classification problems, to a typical 
planning task. Finally, we intend to investigate the problem of incrementally refining 
the set of rules generated by ATRE, when new training observations are made 
available. 
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