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Abstract

Information given in topographic map captions or in GIS models is often insufficient to
recognize interesting geographical patterns. Some prototypes of GIS have already been
extended with a knowledge-base and some reasoning capabilities to support sophisticated

map interpretation processes. Nevertheless, the acquisition of the necessary knowledge is still
a demanding task for which machine learning techniques can be of great help. This paper
presents INGENS, a prototypical GIS which integrates machine learning tools to assist users

in the task of topographic map interpretation. The system can be trained to learn operational
definitions of geographical objects that are not explicitly modeled in the database. INGENS
has been applied to the task of Apulian map interpretation in order to discover geographic

knowledge of interest to town planners.
# 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Data capturing is deemed one of the main impediments to the development of
decision support systems based on geographical data. Indeed, data of interest to an
application are often reported only on paper maps, whose raster representation is
inadequate for subsequent analysis processes. Furthermore, obtaining vector
data from a paper map is a very expensive and slow process, since it often requires
manual intervention. Data capturing can be difficult even when maps are already
available in vector format, since the lack of standards in the coding criteria, adopted
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by different organizations and private companies, involves writing conversion
programs.
While supporting the data acquisition process is important, it is equally useful and

challenging to automate the interpretation of a map in order to locate some geo-
graphical objects and their relations. Unfortunately, information given by the map
captions or given as the basis of GIS models is often insufficient to recognize geo-
graphical objects of interest in a given application. For instance, a study of the
drawing instruction of Bavarian cadastral maps (scale 1:5000) showed that symbols
for road, pavement, roadside, garden and so on were defined neither in the caption
nor in the GIS-model of the map (Mayer, 1994). These objects require a process
of map interpretation, which can be quite complex in some cases. The detection of
morphologies characterizing the landscape described in a topographic map, the
selection of the important environmental elements, both natural and artificial, and
the recognition of forms of territorial organization require abstraction processes and
deep domain knowledge that only human experts have. Although these are the pat-
terns that geographers, geologists and town planners are interested in while inter-
preting a map or analyzing data in a GIS, they are never explicitly represented in
topographic maps or in a GIS-model. For instance, in a previous work in coopera-
tion with researchers from the Town Planning Department of the Polytechnic of
Bari, an environmental planning expert system was developed for administrators
responsible for urban planning (Barbanente et al., 1992). The system was able to
provide them with appropriate suggestions but presumed that they had good skills in
reading topographic maps to detect some important ground morphology elements,
such as system of cliffs, ravines, and so on. These are some examples of morphological
concepts that are very important in many civil and military applications, but which
are never explicitly represented in topographic maps or in a GIS-model.
Most research in GIS technology has focused on the aspects of data collection,

storage and visualization (Laurini & Thompson, 1992). However, the range of GIS
applications can be greatly extended by adding interpretation capabilities on geo-
referenced data. Some GIS prototypes have already been extended with a knowl-
edge-base and some reasoning capabilities, in order to support sophisticated map
interpretation processes (Smith, Donna, Sudhakar, & Pankaj, 1997). Nevertheless,
these systems have a limited range of applicability for a variety of reasons.
Firstly, providing the system with operational definitions of some environmental

concepts is not a trivial task. Often only declarative and abstract definitions, which
are difficult to compile into database queries, are available.
Secondly, the operational definitions of some geographical objects are strongly

dependent on the data model adopted for the GIS. Finding relationships between
density of vegetation and climate is easier with a raster data model, while determin-
ing the usual orientation of some morphological elements is simpler in a topological
data model (Frank, 1992).
Thirdly, different applications of a GIS will require the recognition of different

geographical elements in a map. Providing the system in advance with all the
knowledge required for its various application domains is simply illusory, especially
in the case of wide-ranging projects like those set up by governmental agencies.
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A solution to these difficulties can be found in machine learning, a branch of
artificial intelligence that investigates, among other things, how machines can be
trained to recognize some concepts from a given set of examples (Mitchell, 1997). In
this paper we present INGENS (INductive GEographic iNformation System), a
prototypical GIS extended with a training facility and an inductive learning cap-
ability. In INGENS, each time a user wants to formulate queries concerning geo-
graphical objects not explicitly modeled in the database, he/she can prospectively
train the system to recognize such objects within a special user view. Training is
based on a set of examples and counterexamples of geographic concepts of interest
to the user (e.g. ravine or steep slopes). Such (counter-) examples are provided by
the user who detects them on stored maps by applying browsing, querying and dis-
playing functions of the GIS interface. The symbolic representation of the training
examples is automatically extracted from maps, although it is still controlled by the
user who can select a suitable level of abstraction and/or aggregation of data. The
INGENS learning module implements one or more inductive learning algorithms
that can generate geographical object models from the chosen representations of
training examples.
The INGENS logical architecture and data model are described in the next section.

In Section 3, the map description and learning processes are outlined with reference to
a particular application, namely the detection of important environmental and mor-
phological concepts in topographic maps of the Apulia region to support town
planning. Conclusions and ideas for future work are reported in Section 4.
2. INGENS software architecture and object data model

The software architecture of INGENS is illustrated in Fig. 1. The interface layer
implements a graphical user interface (GUI), which allows the system to be accessed
by the following four categories of users:

� Administrators, who are responsible for GIS management.
� Map maintenance users, whose main task is updating the Map Repository.
� Sophisticated end users, who can ask the system to learn operational defini-
tions of geographical objects not explicitly modeled in the database.

� Casual end users, who occasionally access the database and may need differ-
ent information each time. Casual users cannot train INGENS.

� The GUI is an applet and can be run in any Java-enabled Web browser
(Fig. 2).

The layer of the application enablers makes several facilities available to the four
categories of INGENS users. In particular, the Map Descriptor is the application
enabler responsible for the automated generation of first-order logic descriptions
of some geographical objects. Descriptors generated by a Map Descriptor are
called operational. The Data Mining Server provides a suite of data mining systems
that can be run concurrently by multiple users to discover previously unknown and
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useful patterns in geographic data. In particular, the Data Mining Server provides
sophisticated users with an inductive learning system, named ATRE (Malerba,
Esposito, & Lisi, 1998), which can generate models of geographical objects from a
set of training examples and counter-examples. ATRE will be briefly introduced in
Section 3. The Query Interpreter allows any user to formulate queries in SDMOQL,
an extension of OQL (www.odmg.org) that supports data mining queries (Malerba,
Appice, & Vacca, in press). The query can refer to a specific map and can contain
both predefined predicates and new predicates, whose operational definition has
already been learned. Therefore, it is the Query Interpreter’s responsibility to select
the involved objects from the Map Repository, to ask the Map Descriptor to gen-
erate their logical descriptions and to invoke the inference engine of the Deductive
Database, in order to check conditions expressed by both predefined and new pre-
dicates. The Map Converter is a suite of tools which supports the acquisition of
maps from external sources. Currently, INGENS can export maps in Drawing Inter-
change Format (DXF) by Autodesk Inc. (www.autodesk.com) and can automatically
acquire information from vectorized maps in the MAP87 format, defined by the
Italian Military Geographic Institute (IGMI) (www.nettuno.it/fiera/igmi/igmit.htm).
Since IGMI’s maps contain static information on orographic, hydrographic and
administrative boundaries alone, a Map Editor is required to integrate and/or mod-
ify this information (see Fig. 3).
Fig. 1. INGENS three-layered software architecture.
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The lowest layer manages resources like the Map Repository and the Knowledge
Repository. The former is the database instance that contains the actual collection of
maps stored in the GIS. Geographic data are organized according to an object-
oriented data model, which is described in the next subsection. The object-oriented
DBMS used to store data is a commercial one (ObjectStore 5.0 by Object Design,
Inc.), so that full use is made of a well-developed, technologically mature aspatial
DBMS. Moreover, an object-oriented technology facilitates the extension of the
DBMS to accommodate management of geographical objects. The Map Storage
Subsystem is involved in storing, updating and retrieving items in and from the map
collection. As a resource manager, it represents the only access path to the data
contained in the Map Repository and accessed by multiple, concurrent clients. The
Knowledge Repository contains the operational definitions of geographical objects
induced by the Data Mining Server. In INGENS, different users can have different
definitions of the same geographical object. Knowledge is expressed according to a
relational representation paradigm and managed by an XSB-based deductive rela-
tional DBMS (Sagonas, Swift, & Warren, 1994).

2.1. The object-oriented data model

In INGENS, data are organized in topographic maps. An association among
maps is established when they describe the same territory on different scales. Each
map is stored according to a hybrid tessellation–topological model. At the conceptual
Fig. 2. INGENS graphical user interface displaying map data (upper left corner), cell data (upper right

corner), zoomed area (left), geographical objects in the cell (middle), and original bitmap (right).
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level, the model is described by the class diagram in Fig. 4. The tessellation model
follows the usual topographic practice of superimposing a regular grid on a map, in
order to simplify the localization process. Indeed, each map in the repository is
divided into square cells of the same size. Eight one-to-one associations among cells
allow map-reading to proceed from a cell to one of its neighbors in the map. For
each cell the raster image in GIF format is stored together with its coordinates and
component objects. In the topological model of each cell it is possible to distinguish
two different structural hierarchies: physical and logical.
The physical hierarchy describes the geographical objects by means of the most

appropriate physical entity, that is: point, line or region. In different maps of the
same geographical area, the same object may have different physical representations.
For instance, a road can be represented as a line on a small-scale map, or as a region
on a large-scale map. Points are described by their spatial coordinates, while (bro-
ken) lines are characterized by the list of line vertices, and regions are represented by
their boundary lines. Some topological relationships between points, lines and
regions are modeled in the conceptual design, namely, points inside a region or on
its border and regions disjoining/meeting/overlapping/containing/equaling/covering
other regions. The meaning of the topological relationships between regions is a
variant on that reported in the nine-intersection model by Egenhofer and Herring
(1994), in order to take into account problems caused by approximation errors.
Fig. 3. The Map Editor interface is a Java applet that allows users to reproduce the content of a raster

image of a map. Geographical objects can be inserted, deleted, modified and previewed.
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The logical hierarchy expresses the semantics of geographical objects, independent
of their physical representation. Since the conceptual data model has been designed
to store topographic maps, the entity logical_object is a total generalization of eight
distinct entities, namely, hydrography, orography, land administration, vegetation,
administrative (or political) boundary, ground transportation network, construction
and built-up area. Each of them is in turn a generalization, that is, for instance, an
administrative boundary must be classified in one of the following classes: city,
province, county or state.
According to the principles of all database design methodologies, the conceptual

schema in Fig. 4 contains entities taken from the real world and is independent of
the characteristics of the DBMS. Generally, the transformation of a conceptual
schema into a logical schema is not straightforward. However, this task is simplified
when the reference logical model is object-oriented. The main decisions made for
the logical model concern the implementation of some relationships, by means of
either functions or data members. For instance, the relationship between points and
lines is represented by means of instance data members in the corresponding classes,
while all the topological relationships between regions are implemented by some
functions.
3. Map description and inductive learning: a case study

INGENS has been applied to the recognition of four morphological elements in
topographic maps of the Apulia region, Italy, namely, regular grid system of
farms, fluvial landscape, system of cliffs and royal cattle track. Such elements are
deemed relevant for environmental protection, and are of interest to town plan-
ners. A regular grid system of farms is a particular model of rural space organi-
zation that originated from the process of rural transformation. The fluvial
landscape is characterized by the presence of waterways, fluvial islands and
embankments. The system of cliffs presents a number of terrace slopes with the
emergence of blocks of limestone. A royal cattle track is an ancient path for
transhumance that is peculiar to the South-Eastern part of Italy and is character-
ized by the presence of an uncultivated, quite regular trace, about 90–130 m wide,
with a north-west orientation, which is nowadays incorporated into the road net-
work (see Fig. 5).
The territory considered in this application covers 131 km2 in the surroundings of

the Ofanto River, spanning from the zone of Canosa to the Ofanto mouth. More
precisely, the examined area is covered by five map sheets on a scale of 1:25,000
produced by the IGMI (Ofanto mouth—165 II SW, Barletta 176 I NW, Canne della
Battaglia—176 IV NE, Montegrosso 176 IV SE, Canosa 176 IV SW).
The maps was segmented into square observation units of 1 km2 each. The choice

of the gridding step, which is crucial for the recognition task, was made based on the
advice of a team of 15 geomorphologists and experts in environmental planning,
giving rise to a one-to-one mapping between observation units of the map and cells
in the database.
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Fig. 4. Class diagram of INGENS conceptual model in Unified Modeling Language (UML). Only some subclasses of logical object are reported.
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Thus, the problem of recognizing the four morphological elements can be refor-
mulated as the problem of labeling each cell with at most one of four labels. Unla-
belled cells are considered uninteresting for environmental protection.
As previously mentioned, INGENS is a GIS extended with a training facility and

an inductive learning capability in order to overcome the difficulties related to the
acquisition of operational definitions for the recognition task. Details on the auto-
matic generation of the symbolic map descriptions are reported in Section 3.1, while
Section 3.2 is devoted to the task of mining spatial classification rules.

3.1. The generation of symbolic map descriptions

Given a cell size and a vector map in the MAP87 format, the Map Converter
computes the coordinates of all cells in a map and searches the vector file for geo-
graphical objects inside or intersecting each cell. Some properties of geographical
objects are extracted, such as their physical representation (point, line or region), the
coordinates of some traversed points and the altitude of contour slopes. Only
information on some layers is automatically extracted from vector descriptions
provided by IGMI. Then the description of the cells is manually augmented by
means of the Map Editor. Editing is also required in order to correctly link some
lines that are improperly segmented in the original vector map.
By applying algorithms derived from geometrical, topological, and topographical

reasoning, the Map Descriptor generates map descriptions in first-order logic.
The descriptors used for this application are listed in Table 1. Since they are quite

general, they can also be used to describe maps on different scales. Descriptors can
be distinguished as locational (spatial) and non-locational (aspatial). The former
encompass geometrical attributes like line_shape and extension, a directional attri-
bute like geographic_direction, a geometrical relationship like distance, and topolo-
gical relationships like region_to_region and point_to_region. Three non-locational
descriptors are color, type_of and subtype_of.
Fig. 5. An example of royal cattle track. It corresponds to the region between the primary road (a) and

the inter-farm road (b).
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The descriptors contain, type_of, subtype_of and color are unconstrained, meaning
that they are always computed for each logical component in the cell of interest for
the application. On the contrary, all other descriptors are computed only when some
conditions reported in the third column of Table 1 are satisfied. The feature extrac-
tion process can be formalized as shown in Fig. 6.
In the following, the algorithms for the generation of some sample descriptors are

outlined. The descriptor color is an unconstrained nominal attribute, whose values
depend on the nature of the object itself, so the color is blue if the object belongs to
the hydrographic layer, or brown if it belongs to the orographic layer, otherwise it is
black. Since color is a property of the entity logical_object in the data model, its
extraction does not require further computation.
Three different values are considered for the constrained nominal descriptor

line_shape, namely, straight, curvilinear and cuspidal. Let O be a geographical object
represented as a line passing through n points (xi,yi). The angles of incidence wi are:

wi ¼ arctg
xiþ1 � xi
yiþ1 � yi

where i=1, 2,. . ., n�1.
Then, the differences dwi are calculated as follows:

dwi ¼ wiþ1 � wi;

where i=1, 2,. . ., n�1.
The value cuspidal is associated to line_shape, if the greatest difference among

dwi’s exceeds a given threshold �cuspidal. If the cuspidality condition does not hold,
then a check on a straight trend is performed. The value straight is generated if all
differences dwi are smaller than a threshold �straight, which depends on the examined
territory. Otherwise, the value curvilinear is generated for the object O. Some
examples of values computed by this algorithm are reported in Fig. 7.
Finally, the constrained linear descriptor distance is computed as follows. Let O

and O0 be two geographical objects represented by two almost parallel lines passing
through n and m points, respectively. Without loss of generality, let us assume that
n4m (see Fig. 8), then, the average distance between O and O0 is:

distance ¼

Pn

h¼1

dminh

n
ð1Þ

where dminh is the minimum distance between the h-th point of O and any point
of O0.
The descriptions obtained for each cell are quite complex, since some cells contain

dozens of geographical objects of various types. For instance, the cell shown in Fig. 2
contains 132 distinct objects, and its description is a clause with 756 literals in the
body. A partial description is given in Fig. 9.
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Table 1

Descriptors used for the application to Apulian map interpretation

Descriptor Meaning Constraint Domain

Type Values

contain(X,Y) Cell X contains the geographical

object Y

Boolean {true, false}

type_of(Y) Type of Y Nominal 33 nominal values

subtype_of(Y) Specialization of the type of Y Nominal 101 nominal values that are specializations

of the type_of domain

color(Y) Color of Y Nominal {blue, brown, black}

altitude(Y) Altitude of Y Y is represented by a point Linear [0. . .MAX_ALT]

area(Y) Area of Y Y is represented by a region Linear [0. . .MAX_AREA]

density(Y) Density of Y Y is vegetation or buildings Ordinal Symbolic names chosen by expert user

extension(Y) Extension of Y Y is represented by a line Linear [0. . .MAX_EXT]

geographic_direction(Y) Geographic direction of Y Y is represented by a medium–

long line

Nominal {north, east, north_west, north_east}

line_shape(Y) Shape of the linear object Y Y is represented by a line Nominal {straight, curvilinear, cuspidal}

line_to_line(Y,Z) Spatial relation between two lines

Y and Z

Y and Z are represented by two

medium-long lines

Nominal {almost parallel, almost perpendicular}

distance(Y,Z) Distance between two lines Y and Z Y and Z are almost parallel Linear [0. . .MAX_DIST]

region_to_region(Y,Z) Spatial relation between two

regions Y and Z

Y and Z are represented by two

regions

Nominal {disjoint, meet, overlap, covers,

covered_by, contains, equal, inside}

line_to_region(Y,Z) Spatial relation between a line Y

and a region Z

Y (Z) is represented by a line

(region)

Nominal {along_edge, intersect}

point_to_region(Y,Z) Spatial relation between a point Y

and a region Z

Y (Z) is represented by a point

(region)

Nominal {inside, outside, on_boundary, on_vertex}
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3.2. Mining spatial classification rules

Sophisticated end users may train INGENS to learn operational definitions of
some geographical objects that are not explicitly modeled in the database, such as
those relevant for the application to Apulian map interpretation. In order to support
this category of users, the Data Mining Server makes an inductive learning system
available to them, namely ATRE. This system can induce first-order logic descrip-
tions of some concepts from a set of training examples (Michalski, 1983). A distin-
guishing feature of ATRE is that it can induce recursive definitions of concepts and
can autonomously discover concept dependencies, the latter being an important
functionality for many map interpretation problems (Malerba, Esposito, Lanza, &
Lisi, 2001). This system, which has been applied to the interpretation of Apulian
maps, is briefly presented below.
Fig. 7. Example of a straight line (upper left), a curvilinear shape (upper right), and a cuspidal shape

(bottom).
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The learning problem solved by ATRE can be formulated as follows:

Given
� a set of concepts C1, C2,. . ., Cr to be learned,
� a set of observations O described in a language LO,
� a background knowledge BK described in a language LBK,
� a language of hypotheses LH,
� a user’s preference criterion PC,

Find
a (possibly recursive) logical theory T for the concepts C1, C2,. . ., Cr, such
that T is complete and consistent with respect to O and satisfies the pref-
erence criterion PC.

The completeness property holds when the theory T explains all observations in O
of the r concepts Ci, while the consistency property holds when the theory T explains
no counter-example in O of any concept Ci. The satisfaction of these properties
guarantees the correctness of the induced theory with respect to the given set of
observations, O. Whether the theory T is actually correct, that is, whether it classi-
fies correctly all other examples not in O, is an extra-logical matter, since no infor-
mation on the generalization accuracy can be extracted from the training data
themselves. In fact, the selection of the ‘‘best’’ theory is always made on the basis of
an inductive bias, either embedded in some heuristic function or expressed by the
user of the learning system (preference criterion).
In the context of geographical knowledge discovery, each Ci is a geographical

object not explicitly reported in map captions, such as ‘‘fluvial landscape’’. Although
signs and symbols on a map correspond to general concepts (e.g. river, boundary,
and built-up area) which are assumed to be shared by both the map creator and the
map user (Keates, 1996), other geographical objects interesting for the latter might
not have been explicitly modeled by the former. In this case inductive learning
can support sophisticated users by generating the operational definitions of these
Fig. 8. Computation of the average distance between two almost parallel lines.
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geographical objects from training observations (see Fig. 9), which are described by
means of a logic language LO,whose operational descriptors are listed in Table 1.
The language of hypotheses LH is that of linked, range-restricted definite clauses

(De Raedt, 1992). An exemplification is reported in Fig. 10.
The background knowledge is expressed in a language LBK with the same con-

straints as the language of hypotheses. It defines the relevant domain knowledge.
The following is an example of spatial background knowledge:

close to X;Yð Þ ¼ true  region to region X;Yð Þ ¼ meet

close to X;Yð Þ ¼ true  close to Y;Xð Þ ¼ true

which states that two adjacent zones are also close. These rules for qualitative spatial
reasoning can be used by the learning system to derive different spatial relations not
explicitly represented in the logical description of observations.
As regards the application to the interpretation of Apulian maps, some results are

briefly presented below. Twenty-nine cells from the map of Canosa were selected to
train the system. Each cell was assigned to one of the following five classes: system
of farms, fluvial landscape, system of cliffs, royal cattle track and other. The last
Fig. 9. A partial logical description of the cell shown in Fig. 2. It represents an example of fluvial land-

scape. Constant x1 represents the whole cell, while all other constants denote the 132 enclosed objects.
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class simply ‘‘represents ‘the rest of the world,’’’ and no classification rule is gener-
ated for it. Indeed, its assigned cells are not interesting for the problem of environ-
mental protection being studied, and they are always used as negative examples
when ATRE learns classification rules for the remaining classes.
A fragment of the logical theory induced by ATRE is reported in Fig. 10. The first

clause explains all eight training examples of fluvial landscape. It states that cells
labeled as fluvial_landscape contain a blue object of type ‘river’ whose extension is
between 839.394 and 1639.04 m. Therefore, the presence of a river is not sufficient to
recognize a fluvial landscape in a cell. The extension of the river in a cell should also
be relatively long.
The second clause refers to the system of farms and covers all eight training

examples. From the training observations, the machine learning system induced the
following definition: ‘‘There are three adjacent regions (X2, X4, X5), one of which is
certainly a medium-sized parcel (the area is between 12381.2 and 25981.2 m2), and
there is a fourth region (X3), disjoint from the parcel, with a high density (pre-
sumably vegetation)’’. Some experimental results obtained in a previous work are
reported in Esposito, Lanza, Malerba, and Semeraro (1997).
The operational definitions generated by the Data Mining Server can be used

to retrieve new instances of the learned concepts from the Map Repository and to
facilitate the formulation of a query involving geographical objects not present in
map captions. For instance, by submitting the following query in SDMOQL:
SELECT
 C

FROM
 M in Map, C in Cell, R in Road

WHERE
 M->name=‘‘Canosa’’ AND C->map=M AND R-> log_incell=C AND
R-> type_road=‘‘main_road’’ AND class(C)=fluvial_landscape
the user asks INGENS to find all cells in the Canosa map that are classified as flu-
vial landscape and contain a main road. To check the condition defined by the pre-
dicate class(C)=fluvial_landscape, the Query Interpreter generates the symbolic
description of each cell in the map and asks the Query Engine of the Deductive
Database to prove the goal class(C)=fluvial_landscape given the logic program in
Fig. 10. The result set will also include the cell in Fig. 9.
Fig. 10. A fragment of logical theory induced by ATRE.
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4. Conclusions

Information given by map legends or given as basis of data models in geo-
graphical information systems (GIS) is often insufficient to recognize not only geo-
graphical objects relevant for a certain application, but also patterns of geographical
objects which geographers, geologists and town planners are interested in. More-
over, a GIS user may find it quite difficult to describe such geographical objects or
patterns in a query language. That would be tantamount to providing GIS with an
operational definition of abstract concepts often reported in texts and specialist
handbooks. In order to support GIS users in their activity, a new approach has been
proposed in this paper. The idea is to ask users for a set of classified instances of the
geographical objects or patterns which interest them, and then apply machine
learning tools and techniques to generate the operational definitions for such pat-
terns. These definitions can be either used to retrieve new instances from the Map
Repository or to facilitate the formulation of a query. INGENS is a prototypical
GIS with learning capabilities that has been designed and implemented in order to
provide users with a training facility. An application of the system to the problem of
Apulian map interpretation has been reported in this paper in order to illustrate the
advantages of the proposed approach.
This work is still in progress and many problems have to be solved. The segmen-

tation of a map in a grid of suitably sized cells is a critical factor, since over-
segmentation leads to a loss of recognition of global effects, while under-segmentation
leads to large cells with an unmanageable number of components. To cope with the
first problem, it is necessary to consider the context of a cell, that is, the neighboring
cells, both in the training phase and in the recognition phase. To solve problems
caused by under-segmentation it is crucial to provide users with appropriate
abstraction operators that cover up irrelevant information in the cell description. An
empirical indication of possible under-segmentation problems comes from the
number of components in each cell, while problems of over-segmentation can be
related to the difficulty of the trainer in assigning each example to a unique class.
INGENS can be extended in two directions. Firstly, a set of generalization and

abstraction operators will be implemented in order to simplify the complex descrip-
tions currently produced by the Map Descriptor. Secondly, further algorithms for
the discovery of spatial association rules and the quantitative interpretation of
topographic maps will be embedded in the Data Mining Server.
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