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Abstract. A paper document processing system is an information system component which transforms infor-
mation on printed or handwritten documents into a computer-revisable form. In intelligent systems for paper
document processing this information capture process is based on knowledge of the specific layout and logical
structures of the documents. This article proposes the application of machine learning techniques to acquire the
specific knowledge required by an intelligent document processing system, named WISDOM++, that manages
printed documents, such as letters and journals. Knowledge is represented by means of decision trees and first-
order rules automatically generated from a set of training documents. In particular, an incremental decision tree
learning system is applied for the acquisition of decision trees used for the classification of segmented blocks,
while a first-order learning system is applied for the induction of rules used for the layout-based classification and
understanding of documents. Issues concerning the incremental induction of decision trees and the handling of
both numeric and symbolic data in first-order rule learning are discussed, and the validity of the proposed solutions
is empirically evaluated by processing a set of real printed documents.
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1. Introduction

One of the key issues regarding the use of information systems is the acquisition of new
information, which often resides in paper documents. In order to provide a suitable solu-
tion to this problem, information systems will have to be integrated with paper document
processing systems, which are devised to transform printed or handwritten documents into
a computer-revisable form. Since the 1960’s, much research on paper document processing
has focused on optical character recognition (OCR). In the last decade, it has been widely
recognized that text acquisition by means of OCR is only one step of document processing,
which also includes the separation of text from graphics, the classification of documents, the
identification (or semantic labelling) of some relevant components of the page layout and
the transformation of the document into an electronic format. In the literature, the process
of breaking down the bitmap of a scanned paper document (document image) into several
layout components is calleddocument analysis, while the process of attaching semantic (or
logic) labels to some layout components is nameddocument understanding(Tang et al.,
1994). Furthermore, the termdocument classificationhas been introduced to identify the
process of attaching a semantic label (a class name) to the whole document (see figure 1)
(Esposito et al., 1990).
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Figure 1. Three document processing steps: a) document analysis, that is breaking down the bitmap of a document
image into several layout components; b) document classification, that is assigning the document to a pre-defined
set of classes; c) document understanding, that is attaching semantic (or logic) labels to some layout components.

Intelligent document processing systems require specificknowledgefor the analysis,
classification and understanding of paper documents. For instance, the image segmentation
can be based on the layout conventions (orlayout structure) of specific classes of documents,
while the separation of text from graphics requires knowledge on how text blocks can be
distinguished from non-text blocks. The importance of knowledge management in document
processing has led some authors to define document analysis and understanding as a branch
of artificial intelligence (Tang et al., 1994). In many applications presented in the literature,
a great effort is made to hand-code the necessary knowledge according to some formalism
(e.g., block grammars (Nagy et al., 1992), geometric trees (Dengel and Barth, 1989), and
frames (Bayer et al., 1994)). Such hand-coding is time-consuming and limits the application
of intelligent document processing systems to pre-defined classes of documents. In this
article we advocate an extensive application of machine learning techniques and tools
in order to solve the knowledge acquisition bottleneck problem. This approach has been
pursued in the design and development of an intelligent document processing system, named
WISDOM++, which is a newer object-oriented version of the system WISDOM (Windows
InterfaceSystem forDOcumentManagement) (Malerba et al., 1997b), originally written
in C and used to feed a digital library (Esposito et al., 1998). The two main requirements
considered in the design of WISDOM++ are real-time user interaction and adaptivity. The
former involves choosing fast algorithms for document image analysis, while the latter
requires the application of machine learning techniques.

This application to document processing has some peculiarities (see figure 2). Firstly, it
is important to clearly formulate the problems as well as the learning tasks (e.g., classifica-
tion, clustering, regression, etc.) for the particular application domain. In our work, three
problems have been identified in the whole document process:

1. Classification ofblocksdefined by the segmentation algorithm, in order to separate text
from non-text areas in the document image.
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Figure 2. Stages of the application of machine learning techniques to paper document processing (adapted from
Fayyad et al. (1996)).

2. Assignment of documents to one of a pre-defined set of classes (document classification).
3. Association of semantic (or logic) labels to some layout components (document under-

standing).

These are problems in which machine learning techniques can be effectively applied, and
correspond to some of the document processing steps (see next section). For all of them,
the main task is classification.

The second aspect of the application is the creation of the target data set. In this article, we
consider a set of real, single-page documents, which correspond to the photocopy of first-
pages of articles published either in conference proceedings or in professional journals. This
choice is due to our interest in feeding a prototype of an intelligent digital library (Esposito
et al., 1998), although previous works have shown that machine learning techniques can be
applied to a wide range of paper documents, including letters (Esposito et al., 1994) and
maps (Esposito et al., 1997). It is noteworthy that in the case of document classification a
training example is a single-page document, whereas in the block classification a training
example is a block defined by the segmentation algorithm, and in document understanding
a training example is a layout component (frame2) defined by the layout analysis process
(see next section). Thus, a single document is a source of one or more training examples,
according to the particular learning problem.

The third aspect of the application is the choice of the best representation of training
examples. For the first of the three learning problems, experimental results reported in
Section 3 show that a feature vector representation of blocks seems to be the most ap-
propriate. Indeed, the pattern of pixels in a block is not deemed relevant in other papers
(Wong et al., 1982; Fisher et al., 1990), and in some cases only the texture of the block is
considered (Wang and Srihari, 1989). Regarding document classification, training example
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representation depends on the information already extracted in previous processing steps.
For instance, in the work by Pagurek et al. (1990), the textual content of a document is
important to correctly classify the document itself. This implies the use of time-consuming
OCR techniques to “read” the content. On the contrary, in our work the only information
considered for document classification is the layout structure. Our approach is based on the
idea that humans are generally able to classify documents (invoices, letters, order forms,
papers, indexes, etc.) from a perceptive point of view, by recognizing the layout structure
of a form. This means that documents belonging to the same class have a set of relevant and
invariant layout characteristics, calledpage layout signature, which can be used for classifi-
cation. However, the representation of such a page layout signature requires first-order logic
formalisms or equivalents (e.g., attributed graphs), due to the presence of geometric rela-
tions among layout components. The same applies to the document understanding problem,
since we assume that the identification of layout components with a logical meaning can be
based on their geometric properties and relations. Other representation issues regarding the
document processing domain are the accurate preprocessing of document images in order to
reduce the effect of noise and the consideration of both numeric and symbolic descriptions,
since the former increase the sensitivity while the latter increase the stability of the internal
representation of images (Connell and Brady, 1987).

The fourth aspect of the application is the choice of appropriate machine learning tools
and techniques. In previous works on block classification, linear discriminant analysis
techniques were used (Wang and Srihari, 1989; Wong et al., 1982). It is well-known that
these parametric statistical techniques cannot handle complicated non-linear interactions
among features. On the contrary, the top-down induction of decision trees does handle such
interactions and produces results that are simple to interpret. In fact, this is the approach
followed in our work (see Section 3). To solve document classification and understanding
problems, it is necessary to resort to first-order learning systems, suitably extended in order
to handle both numeric and symbolic attributes and relations (see Section 4).

The fifth and last stage of the application of machine learning techniques to document
processing is the evaluation and interpretation of results. Predictive accuracy is certainly
the most important evaluation criterion for the three learning problems considered in this
work, but it is not the only one. When possible, it is important to distinguishomissionerrors
from commissionerrors. Indeed, in document processing applications omission errors are
deemed to be less serious than commission errors, which can lead to totally erroneous
storing of data in information systems. As regards the interpretation of the learning method
results, it is noteworthy that the first-order learning method proposed in this article yields
layout/logical structure models that can be easily checked and interpreted with visualization
techniques.

The purpose of the present article is to illustrate problems in the application of ma-
chine learning techniques to various document processing steps performed by the system
WISDOM++. Such steps are described in the next section, which clarifies the learning
problems, the learning tasks, the preprocessing of original data (i.e., document images),
as well as the two main document structures (i.e., layout and logical) involved in the var-
ious processing steps. In Section 3, some representation and learning issues concerning
the block classification problem are discussed, the solutions adopted in WISDOM++ are
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reported, and the results of an empirical evaluation are commented. Section 4 is devoted
to the presentation of the first-order learning system used for both document classification
and document understanding. The system, namedINDUBI/CSL(Malerba et al., 1997c), has
been extended in order to handle both symbolic and numeric attributes and relations, and
presents some distinguishing features with respect to other well-known first-order learn-
ing systems. Some experimental results on document classification and understanding are
commented in Section 5. The article concludes with a brief discussion on results achieved
in this work and unresolved problems.

2. Functional architecture of WISDOM++

The tasks performed by WISDOM++ (www.di.uniba.it/∼malerba/wisdom++/) and the in-
termediate results produced at each processing step are reported in figure 3.

Initially, each page is scanned with a resolution of 300 dpi and thresholded into a binary
image. The bitmap of an A4-sized page takes 2,496× 3,500= 1,092,000 bytes and is stored
in TIFF format. Actually, WISDOM++ can manage multi-page documents, each of which
is asequenceof pages. The definition of the right sequence is the responsibility of the user,
since the scanner is able to scan a single page at time. Pages of multi-page documents are
processed independently of each other in all steps, therefore the document processing flow
is described for single pages only.

Figure 3. Functional architecture of WISDOM++.
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The document analysis process is quite complex and includes:

1. Preprocessing, that is, the evaluation of the skew angle, the rotation of the document,
and the computation of a spread factor. In particular, the skew angle is estimated by
analyzing thehorizontal projection profile, that is, a histogram reporting the total number
of black pixels for each row of the bitmap. The histogram shows sharply-rising peaks
with the base equal to the character height when text lines span horizontally, while it is
characterized by smooth slopes when a large skew angle is present. This observation can
be mathematically expressed by a real-valued function, called thealignment measure,
that returns the mean square deviation of the histogram for each orientation angleθ .
Thus, finding the actual skew angle is reformulated as the problem of locating the global
maximum value of the alignment measure. Since this measure is not smooth enough to
apply usual gradient ascent techniques, the system adopts some peak-finding heuristics
(Altamura et al., 1999). Once the skew angle is estimated, the document is rotated. The
loop “skew estimation—document rotation” terminates when the estimated skew angle
is zero. At that point WISDOM++ estimates thespread factorof the document image as
the ratio of the mean distance between peaks and the peak width. Such a ratio is greater
than (lower than) 1.0 for simple (complex) documents.

2. Segmentation, that is, the identification of rectangular blocks enclosing content portions.
The segmentation is performed on a document image with a resolution of only 75 dpi
(reduceddocument image), which is deemed a reasonable trade-off between the accuracy
and the speed of the segmentation process. The page is segmented by means of a fast
technique, namedRun Length Smoothing Algorithm(RLSA) (Wong et al., 1982), that
applies four operators to the document image: 1) Horizontal smoothing with a threshold
Ch; 2) Vertical smoothing with a thresholdCv; 3) Logical AND of the two smoothed
images; 4) additional horizontal smoothing with another thresholdCa. The novelty of
WISDOM++ is that the smoothing parametersCv andCa are defined on the grounds of
the spread factor.

3. Block classification, which aims at distinguishing blocks enclosing text from blocks
enclosing graphics (pictures, drawings and horizontal/vertical lines).

4. Layout analysis, that is, the perceptual organization process that detects structures among
blocks. The result is a hierarchy of abstract representations of the document image, called
layout structure. The leaves of the layout tree (lowest level of the abstraction hierarchy)
are the blocks, while the root represents the set of pages of the whole document. A page
may include several layout components, calledframes, which are still rectangular areas
corresponding to groups of blocks. An ideal layout analysis process should segment a
page into a set of frames, such that each frame can be associated with a distinct seman-
tic label (e.g., title and author of a scientific paper). WISDOM++ extracts the layout
structure by means of a knowledge-based approach: Generic knowledge and rules on
typesetting conventions are used in order to group basic blocks together (Malerba et al.,
1995). The layout hierarchy has six levels: basic blocks, lines, set of lines, frame1,
frame2, and pages.

While the layout structure associates the content of a document with a hierarchy of layout
objects, such as blocks, frames and pages, thelogical structureof the document associates
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the content with a hierarchy oflogical objects, such as sender/receiver of a business letter,
title/authors of a scientific article, and so on. The problem of finding the logical structure
of a document can be reformulated as the problem of defining a mapping from the layout
structure into the logical one. In WISDOM++ this mapping is limited to the association of
a page with a document class (document classification) and the association of page layout
components with basic logical components (document understanding). The mapping is built
by matching the document description withmodelsof classes of documents and against
models of the logical components of interest for that class.

The descriptions of both layout structures and models are given in a first-order language,
where unary function symbols, calledattributes, are used to describe properties of a single
layout component (e.g., height and length), while binary predicate and function symbols,
called relations, are used to express interrelationships among layout components (e.g.,
contain, on-top, and so on). Attributes and relations can be both symbolic (i.e., categorical
and ordinal) and numeric. An example of description in first-order language of a page layout
is reported in figure 4.

Models are represented as rules. Typically, such rules are handcoded for particular kinds
of documents (Nagy et al., 1992), requiring much human tuning and effort. WISDOM++
uses rules that are automatically generated from a set of training examples for which the user-
trainer has already defined the correct class and has specified the layout components with

Figure 4. Frame2 layout level of a document processed by WISDOM++ (left). The level of the layout hierarchy
to be displayed is chosen by clicking on the radio buttons F2 (frame2), F1 (frame1), SL (set of lines), LN (lines) and
BB (basic blocks). The document has been classified as an ICML95 paper (see status bar) and its logical structure
has been understood (see labels associated to the layout components). The first-order logical description of the
page layout is reported on the right window. Distinct constants(X2, . . . ,X12) denote distinct layout components.
The constant X1 denotes the whole page.
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a logical meaning (logical components). The first-order learning system used to generate
such rules is INDUBI/CSL (Malerba et al., 1997c).

Finally, WISDOM++ allows the user to set up the text extraction process by selecting
the logical components to which the OCR has to be applied. Then the system generates an
HTML/XML version of the original document. This contains both text read by the OCR
and pictures extracted from the original bitmap and converted into the GIF format. Text
and images are spatially arranged so that HTML/XML reconstruction of the document is as
faithful as possible to the original bitmap. Moreover, the XML format maintains information
extracted during the document understanding phase, since the Document Type Definition
(DTD) is specialized for each class of documents to represent the specific logical structure.

3. Decision tree learning for block classification

Page segmentation defines blocks that may contain either textual or graphical information. In
order to facilitate subsequent document processing steps, it is important to label these blocks
according to the type of content. Labels used in WISDOM++ are text block, horizontal line,
vertical line, picture (i.e., halftone image) and graphics (e.g., line drawing). Each block can
be associated with only one label, so that the labeling problem can be reformulated as a
classification problem where labels correspond to classes.

A method for document block classification was proposed by Wong et al. (1982). The
basic features used for classifying blocks are four:

1. The height of each block.
2. The eccentricity of the rectangle surrounding the block.
3. The ratio of the number of black pixels to the area of the surrounding rectangle.
4. The mean horizontal length of the black runs of the original block image.

Additional features concerning the texture of the blocks were proposed by Wang and Srihari
(1989). A common aspect of these works is the use of linear discriminant functions as
classifiers. An exception is the work by Fisher et al. (1990), who resort to a rule-based
classification method, where rules are hand-coded.

In WISDOM++, block classification is performed by means of a decision tree automat-
ically built from a set of training examples (blocks) of the five classes. The choice of a
“tree-based” method instead of the most common generalized linear models is due to its
inherent flexibility, since decision trees can easily handle complicated interactions among
features and give results that are simple to interpret.

In a preliminary study, a decision tree has been induced from a set of 5,473 examples of
pre-classified blocks obtained from 53 documents of various kinds.1 Two different decision
tree learning systems have been considered: C4.5 (Quinlan, 1993) and ITI (Utgoff, 1994).
The former is abatchlearner, that is it cannot change the decision tree when some blocks
are misclassified, unless a new tree is generated from scratch using an extended training
set. On the contrary, ITI allowsincrementalinduction of decision trees, since it can revise
the current decision tree, if necessary, in response to each newly observed training instance.
Currently, ITI is the only incremental system able to handle numerical attributes as those
used to describe the blocks.
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Table 1. Experimental results for a ten-fold cross-validation performed on the data set of 5,473 examples. Both
systems are allowed to prune the induced trees using their default pruning method (error-based pruning for C4.5
and MDL pruning for ITI).

C4.5 ITI

Average no. of leaves 89.8 92.4

Predictive accuracy 96.8 96.88

Actually, ITI can operate in three different ways. In thebatch mode, it works in a
way similar to C4.5. In thenormal operation mode, it first updates the frequency counts
associated to each node of the tree as soon as a new instance is received. Then it restructures
the decision tree according to the updated frequency counts. When working in this mode,
ITI builds trees with almost the same number of leaves and the same predictive accuracy
of those induced with C4.5 (see Table 1). In theerror-correctionmode, frequency counts
are updated only in case of misclassification of the new instance. The main difference
between the two incremental modes is that the normal operation mode guarantees to build
the same decision tree independently of the order in which examples are presented, while
the error-correction mode does not.

From the practical point of view, the main problem we observed is that ITI creates large
files (more than 10 Mb) when trained on the data set of 5,473 instances. The reason of this
space inefficiency is due to the need of storing frequency counts of training examples in
each node of the induced tree. This inefficiency can be contained (about 1.5 Mb) when the
system operates in the error-correction mode, since frequency counts are updated only in
case of misclassification.

Similar results have also been obtained in a recent empirical evaluation performed on a
set of 112 documents (Altamura et al., 1999). In this case, the training set includes 9,429
examples and the decision tree built in the batch mode takes more than 24 Mb, while the
decision tree obtained with the error-correction mode requires 982 Kb. Nevertheless, the
difference between the predictive accuracy in the batch mode and in the error correction
mode is less than 0.2% if estimated on an independent test set of 3,176 examples. The
numerical features used by WISDOM++ to describe each block are reported in Table 2.
Two features, namely width and F3, are never tested in the decision tree built with the
pure error-correction mode. The former is especially useful to recognize horizontal/vertical
lines, but the decision tree learning system prefers to test on the equally informative feature
eccentricity. The latter is excluded since it characterizes extra-long runs of black pixels, as
those found in newspaper headlines, while documents considered in this experiment have
few occurrences of large text blocks.

Two new functions have been added to WISDOM++: The interactive correction of the
results of the block classification, and the updating of the decision tree produced by ITI.
The preference for ITI is due to the possibility of on-line training the document processing
system: When users are dissatisfied with the classification performed by the induced deci-
sion tree, they can ask the system to revise the classifier without starting from scratch. In
this way, some blocks (e.g., the logo of a business letter) can be considered text for some
users and graphics for others.
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Table 2. Features used to describe segmented blocks.

Feature Description

Height Height of the reduced block image

Width Width of the reduced block image

Area Area of the reduced block image (Height∗Width)

Eccen Eccentricity of the reduced block image (Width/Height)

Blackpix Total number of black pixels in the reduced block image

Bw trans Total number of black-white transitions in all rows of the reduced block image

Pblack Percentage of black pixels in the reduced block image (Blackpix/Area)

Mean tr Average number of black pixels per black-white transition (Blackpix/Bwtrans)

F1 Short run emphasis

F2 Long run emphasis

F3 Extra long run emphasis

4. First-order learning for document classification and understanding

In a previous work on the problem of processing paper documents, a multistrategy learning
approach was proposed to learn a set of rules for both document classification and document
understanding (Esposito et al., 1994). In particular, a learning methodology that integrates a
parametric and a conceptual learning method was adopted. In fact, the application required
the management of first-order representations with both numeric and symbolic data, while
the conceptual learning method was able to deal exclusively with symbolic data. The in-
tegrated learning methodology committed the management of all numeric attributes to the
parametric method and the handling of symbolic attributes and relations to the first-order
conceptual method. The main limitation of this approach is that the parametric method can
manage only zero-order (i.e., feature vector) representations. Thus numeric attributes con-
cerns only “global” properties of the whole document, while “local” properties of a compo-
nent of the document (e.g., height, width and position) have to be discretized before starting
the conceptual learning process.

Preliminary results obtained with the integrated approach were encouraging, but not
totally satisfying. This prompted the investigation of an extension of the first-order learning
method implemented in INDUBI/CSL (Malerba et al., 1997c), a general-purpose learning
system used in this application.

4.1. The learning algorithm

The learning problem solved by INDUBI/CSL is that of inducing a set of hypotheses
H1, H2, . . . , Hr , from a set E of training examples. Each hypothesisHi is the description
of a conceptCi .

The representation language adopted by the system has two distinct forms ofliterals:

f (t1, . . . , tn) = Value(simple literal) and f (t1, . . . , tn) ∈ Range(set literal)
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where f is ann-ary function symbol, calleddescriptor, ti ’s can be either variable or constant
terms,Valueis the value taken byf when applied tot1, . . . , tn, andRangeis a set of possible
values taken byf . Some examples of literals are the following:height(x2) ∈ [1.1..2.1],
color(x1) = red, distance(x1, x2) ∈ [0.0..1.0]. Literals can be combined to formdefinite
clauses:

L0← L1, L2, . . . , Lm

where the simple literalL0 is calledheadof the clause, while the conjunction of simple or set
literals L1, L2, . . . , Lm is namedbody. Definite clauses of interest for classification prob-
lems satisfy two different constraints:Linkedness(Helft, 1987) andrange-restrictedness
(De Raedt, 1992).

Each training example is represented as a single ground, linked and range-restricted
definite clause. On the contrary, a hypothesisH is a set of linked, range-restricted definite
clauses, calledrule, such that all clauses have the same head and no constant terms. Permitted
literals in H can be either single-valued or range-valued.

At the high level INDUBI/CSL implements aseparate-and-conquer(or sequential cov-
ering(Mitchell, 1997)) search strategy to generate a rule. With reference to figure 5, thesep-
aratestage corresponds to the external loop that checks for the completeness of the current
rule.2 If this check fails, the search for a new consistent clause is begun.3 The search space
for the separate stage is the set of rules, while the search space of theconquerstage is the set
of clauses. The conquer stage performs a general-to-specific beam-search to construct a new
consistent, linked and range-restricted clause. The separate-and-conquer search strategy is
adopted in other well-known learning systems, such as FOIL (Quinlan and Cameron-Jones,
1993). On the other hand, INDUBI/CSL bases the conquer phase on the concept ofseed
example, whose aim is that of guiding the generalization process. Indeed, ife+ is a positive
example to be explained by a hypothesisH, thenH should contain at least one clauseC that
generalizese+. Such a clause can be obtained frome+ by applying two distinct operators:
Dropping-condition(or dropping-literal) andturning-constants-into-variables.

Figure 5. Separate-and-conquer search strategy.
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Figure 6. Beam search for consistent clauses that covere+.

To sum up, INDUBI/CSL starts with a seed examplee+ and generates a setConsof
clauses that are consistent and covere+. The best clause is selected fromConsaccording to
a user-defined preference criterion (ConsCrit), and the positive examples covered by such
a clause are removed from the set of examples to be covered. If there are still some positive
examples to be covered, a new seed will be selected in the next iteration.

In the beam search (see figure 6), INDUBI/CSL searches forM , if any, distinct clauses
that are consistent and range-restricted. Instead of searchingbottom-upby turning constants
of e+ into variables and then progressively dropping literals in the body, the system pro-
ceedstop-downby specializing the most general hypothesis that coverse+. Such a hypo-
thesis is a definite clause with empty body,

f (X1, . . . , Xn) = Value←
which is obtained by applying the operator turning-constants-into-variables to the head
of e+. The specialization operator applied in this search is namedadding-literal and it
is the dual of the generalization operator dropping-literal. During this top-down search,
INDUBI/CSL ranks clauses according to a user-defined preference criterion (SpecCrit).
Consistent clauses are copied intoConsand the firstP clauses are selected for the next
specialization step.P is thebeamof the search.

The specialization operator has been extended in order to handle both numeric and
symbolic descriptors (Malerba et al., 1997a). This extension satisfies the following
conditions:

1. The specialized clause has to be linked.
2. In the case of numerical descriptors, the specialization of a clauseG is obtained by

adding literals of the typef (X1, . . . , Xn) ∈ [a..b], where the interval [a..b] is defined
according toG itself (on-line local discretization).

3. The heuristic function used to choose among different intervals [a..b] should satisfy a
property that reduces the computational complexity of the operator.

4. The specialized clause should cover the seed examplee+.
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Figure 7. Specialization operator for definite clauses.

4.2. The specialization operator

In order to specialize a clauseG, INDUBI/CSL has to choose some literals to be added.
All candidate literals are generalizations of literals in the seed,e+, obtained by turning
distinct constants into distinct variables. Both numeric and symbolic data are handled in
the same way (see figure 7). The only difference is that numeric literals already present in
G can be reconsidered later on. In this case, the best (sub-)interval is recomputed, since it
may be influenced by the addition of further literals. For the specialization process, only
a subset of N linked literals is actually considered: the selection of literals is based on
the cost associated to the descriptorf , so that the user can express a preference for some
literals.

In order to compute the interval for numeric literals (see figure 8), the system builds a
table associated to the termf (X1, . . . , Xn) by matching the specialized clause

G′ : G, f (X1, . . . , Xn) ∈ [−∞..+∞]

with positive and negative examples. Each example produces as many entries as the number
of unifiers. The table, initially empty, contains pairs〈Value,Class〉, whereClasscan be either
+ or − according to the sign of the examplee from whichValue is taken, whileValue is
determined by considering the literal ofe that unifies withf (X1, . . . , Xn) ∈ [−∞..+∞].
Then the problem is finding the interval that best discriminates positive from negative
examples. Any threshold valueα lying between two consecutive distinct values defines two
disjoint intervals: The left interval [l1, l2] and the right interval [r1, r2]. The lower boundl1
of the left interval is the smallest value in the table with a+ sign, while the upper bound
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Figure 8. Choice of the best interval for numeric descriptors.

l2 is the largest value in the table that does not exceed the thresholdα. On the contrary,
the lower boundr1 of the right interval is the smallest value in the table that exceedsα,
while the upper boundr2 is the largest value with a+ sign. When one of the two intervals
contains no positive value, then it is set toundefined. At least one of the two intervals must
be defined, since the table contains at least one entry〈SeedValue,+〉 for the value taken
by f (X1, . . . , Xn) in the seed. Not all defined intervals are to be considered, since the
specialized clause

G′′ : G, f (X1, . . . , Xn) ∈ Range

for a givenRangemight no longer cover the seed examplee+. Those intervals that include
the SeedValueare said to beadmissible, because they guarantee that the corresponding
specializations still covere+.

The best admissible interval is selected according to an information-theoretic heuristics.
By looking at the table as a source of messages labeled+ and−, the expected information
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on the class membership conveyed from a randomly selected message is:

info(n+, n−) = − n+

n+ + n−
log2

n+

n+ + n−
− n−

n+ + n−
log2

n−

n+ + n−

wheren+ andn− are the number of values in the table with a positive and a negative sign,
respectively. If we partition the table into two subsets,S1 and S2, the former containing
n+1 +n−1 values falling within an admissible interval and the latter containing the remaining
values, the information provided byS1 will be close to zero when almost all cases have the
same+ or − sign. Although the information prefers partitions that cover a large number
of cases of a single class and a few cases of other classes, we must bias such a preference
towards intervals with a high number of positive cases, as well. The followingweighted
entropy:

E(n+1 , n
−
1 ) =

n−1
n+1

info(n+1 , n
−
1 )

penalizes those admissible intervals with a low percentage of positive cases. A heuristic
criterion is that of choosing the admissible interval that minimizes the weighted entropy. It
differs from that adopted in C4.5, where the entropy is not weighted, and in FOIL where
only the information content of the positive class is considered.

As a concrete illustration of the proceduredetermine-range, consider the table below.

Value | 0.5 0.7 0.9 1.0 1.5 1.5 1.5 1.7 2.5 2.5

Sign | + − − − − − + + − +

There are four possible cut points that generate the following intervals:

α 0.60 1.25 1.60 2.10

[l1, l2] [0.50..0.50] [0.50..1.00] [0.50..1.50] [0.50..1.70]

[r1, r2] [0.70..2.50] [1.50..2.50] [1.70..2.50] [2.50..2.50]

Let us suppose thatSeedvalueequals 1.50. Then only those intervals including 1.50 are
admissible. The weighted entropy for each of them is

Admissible interval | [0.70..2.50] [1.50..2.50] [0.50..1.50] [0.50..1.70]

EntropyE | 1.836592 1.000000 2.157801 1.590723

Thus, the best interval is the second one, with weighted entropy equal to 1.0.
Note that cut points 0.80 and 0.95 have not been considered. Indeed, only those between

two consecutive distinct values with a different sign (boundary points) are considered. This
choice is due to the following theorem:
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Theorem 1. If a cut-pointα minimizes the measure E(n+1 , n
−
1 ), thenα is a boundary

point.

The proof is reported in Appendix A. This result helps to reduce computational com-
plexity of the proceduredetermine-rangeby considering only boundary points. Actually,
the theorem above is similar to that proved by Fayyad and Irani (1992) for a different mea-
sure, namely the “unweighted” class information entropy computed in some decision tree
learning systems.

4.3. Handling numerical data in first-order learning: other approaches

The first attempt to deal with continuous-valued attributes in first-order systems that learn
classification was made by Bergadano and Bisio (1988), who proposed a method to auto-
matically set some parameters of predicate “schemes” with a parametric semantics. Later
on, a two-step approach was implemented in the system ML-SMART (Botta and Giordana,
1991): First, a tentative numerical parameter is learned, and then a standard genetic al-
gorithm is applied to refine the numerical knowledge. On the contrary, the system Rigel
(Gemello et al., 1991) discretizes continuous data by applying a generalization operator
calledconsistent extending reference rule, which extends the reference of a selector, that is
the set of values taken by a functionf . Values are added only if this increases the number
of covered positive examples without covering negative ones. A different approach was
proposed by Esposito et al. (1993) who combined a discriminant analysis technique for
linear classification with a first-order learning method, so that the numerical information
is handled by linear classifiers, while the symbolic attributes and relations are used by the
first-order learning system. A common characteristic of all these approaches is that they
have been conceived for systems that can learn only rules with nullary predicates in the
head, that is with predicates corresponding to propositional classes.

Dzeroski and Bratko (1996) proposed transforming first-order representations into propo-
sitional form, in order to handle real numbers by means of techniques already tested in
decision tree learning systems. Nevertheless, the transformation algorithm is applicable
only when the background relations aredeterminate(Lavrac and Dzeroski, 1994).

A different approach has been adopted in FOIL 6.2 (Quinlan and Cameron-Jones, 1993).
The system automatically produces comparative literals of typeVi > k, Vi ≤ k, Vi > Vj ,
Vi ≤ Vj , whereVi andVj are numerical variables already present in other non-comparative
literals andk is a numerical threshold. The selection of the threshold is based on an
information-theoretic measure, which is different from that adopted in our system. In-
deed, FOIL’s specialization operator does not guarantee it will cover a specific positive
example, the seed. Other differences between the two systems concern the top-down learn-
ing process (beam-search, seed-driven vs. hill-climbing, information-gain-driven), and
the stopping criterion (at leastM consistent hypotheses found vs. minimum description
length).

Much related work can also be found in other contexts, such as qualitative and relational
regression in inductive logic programming, and learning numerical constraints in inductive
constraint logic programming. An updated review can be found in Lavrac et al. (1996).
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5. Experimental results on document classification and understanding

In order to test the efficiency and the effectiveness of the first-order learning algorithm,
an experiment on the domains of document classification and understanding has been
organized.

INDUBI/CSL has been applied to the problems of classifying and understanding a set of
112 real, single-page documents distributed as follows: Twenty-eight articles of ICML’95,
thirty articles of ISMIS’94,4 thirty-four articles of IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI),5 and twenty documents of different type or published on
other proceedings, transactions and journals (Reject). All documents of the first three classes
are first-pages of articles. For ICML’95 papers, five logical components are of interest,
namely page number, title, author, abstract and body of the paper. For ISMIS’94 papers the
following logical components are considered: Title, author, abstract and body of the paper.
Finally, for TPAMI papers only five logical components are defined, namely running head,
page number, title, abstract, and body of the paper. For the remaining documents it was not
possible to define a set of logical components because of the high variability. Thus there are
four learning problems to be solved: Learning to classify documents in the classes ICML’95,
ISMIS’94, TPAMI and Reject, and learning to identify logical components in ICML’95/
ISMIS’94/TPAMI papers. In document understanding problems each document generates
as many training examples as the number of layout components (in this experiment, only
components at theframe2level are considered). Each training example is represented as a
definite ground clause, where different constants represent distinct components of a page
layout. The choice of a representation language for the description of the layout of each
document is very important. In previous experiments we used only symbolic descriptors by
discretizing numeric attributes such as height, width and position of a block (see Table 3).
Since the current release of INDUBI/CSL is able to handle numerical descriptors as well,
we decided to organize an experiment to test the improvement of the generated rules in
terms of accuracy, learning time and simplicity.

The experimental procedure followed is ten-fold cross validation. At each trial three statis-
tics are collected: Number of errors on the test cases, number of generated clauses, and
learning time. Results for the document classification are reported in Table 4. The entries
labelled ‘mixed’ refer to symbolic/numeric representation and on-line discretization.

In the document classification problem, the average number of errors for mixed data
is significantly lower than the average number of errors for symbolic data. Indeed, the
p-value returned by the non-parametric Wilcoxon signed-ranks test (Orkin and Drogin,
1990) is 0.0144. Moreover, the introduction of numerical descriptors simplifies the classi-
fication rules, although the learning time is doubled (time is in prime minutes and refers to
a SUN 10). Two examples of rules learned by the embedded system are reported below. It
is worthwhile to observe that such rules capture some spatial relationships between layout
components, thus confirming the importance of adopting a first-order representation:

class(X) = icml← part of(X,Y), on top(W,Z), on top(Y,U ), to right(Y,V),
alignment(Z,U ) = only left col,
alignment(V ,Y) = only middlecol
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Table 3. Descriptors used in the first-order representation of the layout components.

Descriptor name Definition

width(block) Integer domain (1..640) in numerical descriptions

Linear domain in symbolic descriptions: veryvery small, verysmall,
small, mediumsmall, medium, mediumlarge, large, verylarge,
very very large

height(block) Integer domain (1..875) in numerical descriptions

Linear domain in symbolic descriptions: veryvery small, verysmall,
small, mediumsmall, medium, mediumlarge, large, verylarge,
very very large

x poscentre(block) Integer domain

y poscentre(block) Integer domain

position(block) Nominal domain (used in symbolic descriptions in the place of
x poscentreandy poscentre): top left, top, topright, left, center,
right, bottomleft, bottom, bottomright

typeof(block) Nominal domain: text, horline, image, verline, graphic, mixed

part of(block1,block2) Boolean domain: true if block1 contains block2

on top(block1,block2) Boolean domain: true if block1 is above block2

to right(block1,block2) Boolean domain: true if block2 is to the right of block1

alignment(block1,block2) Nominal domain: onlyleft col, only right col, only middle col,
only upperrow, only lower row, only middle row

Table 4. Experimental results for document classification.

Av. no. errors No. clauses Av. learning time

Class Symbolic Mixed Symbolic Mixed Symbolic Mixed

ICML’95 1.4 0.8 4.8 2.0 4 : 42 9 : 54

ISMIS’94 1.3 0.2 5.7 1.0 5 : 30 9 : 18

TPAMI 1.0 0.7 4.4 1.9 5 : 06 10 : 06

TOTAL 3.7 1.7 14.9 4.9 15 : 36 29 : 30

class(X) = icml← part of(X,Y), x poscentre(Y) ∈ [301..557],
y poscentre(Y) ∈ [25..190],
on top(V ,Y), on top(Z,V), on top(W,Y)

Results for the three document understanding problems are reported in Table 5. The
set of rules learned by INDUBI/CSL for the ICML95 documents in one experiment are
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Table 5. Experimental results for document understanding.

Av. no. errors No. clauses Av. learning time

Class Symbolic Mixed Symbolic Mixed Symbolic Mixed

ICML’95 6.6 3.2 31.6 8.4 44 : 30 26 : 00

ISMIS’94 6.3 3.2 43.8 10.8 50 : 36 25 : 24

TPAMI 9.2 2.0 39.5 9.0 30 : 24 32 : 00

reported below:

logic type(X) = pagenumber← width(X) ∈ [8..16], height(X) ∈ [7..8]
logic type(X) = title ← height(X) ∈ [13..31],

x poscentre(X) ∈ [280..348]
logic type(X) = author ← height(X) ∈ [42..79],

y poscentre(X) ∈ [173..279]
logic type(X) = abstract ← y poscentre(X) ∈ [256..526],

on top(Y, X), to right(X, Z)
logic type(X) = abstract ← x poscentre(X) ∈ [147..218],

on top(X,Y), to right(Y, Z)
logic type(X) = body ← width(X) ∈ [242..255], typeof(X) = text
logic type(X) = body ← x poscentre(X) ∈ [368..477],

on top(Z, X), to right(Y, Z)
logic type(X) = body ← width(X) ∈ [78..136], typeof(X) = text,

on top(X,Y), to right(Y, Z)
logic type(X) = body ← width(X) ∈ [237..255],

alignment(Y, X) = only right col
logic type(X) = body ← height(X) ∈ [422..519]

As expected, the choice of the representation language for the page layout is a critical
factor in the document understanding. Indeed, satisfactory error rates have been obtained
only with numeric/symbolic representations. For all classes the average number of errors for
mixed data is significantly lower than the average number of errors for symbolic data (the
worst p-value of the Wilcoxon test is 0.0072). Once again, the introduction of numerical
descriptors simplifies significantly the classification rules and decreases the learning time
for two classes.

5.1. Conclusions

Experimental results reported above prove that machine learning techniques can be help-
ful to acquiring specific knowledge for intelligent processing of printed documents. In
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particular, two decision tree learning systems have been successfully applied to the prob-
lem of classifying blocks defined by the segmentation algorithm, while a first-order rule
learning system has been effectively used for document classification and understanding.

As regards the block classification problem, three different approaches to the top-down
induction of decision trees have been investigated: Batch, normal incremental, and error-
correction incremental. The main advantage of the two incremental approaches is that
decision trees can be properly revised as new training examples are available. Revising a
decision tree is generally less expensive than learning a new decision tree from an extended
training set. This is an important aspect to consider when real-time user interaction is a
requirement of document processing applications. On the other hand, a pure incremental
learning algorithm can require a huge amount of memory to store all necessary informa-
tion, thus making this approach unfeasible. In our work, the error-correction incremental
approach has proved to be a reasonable compromise between predictive accuracy and space
complexity. As future work, the problem of efficiently handling numerical features in the
incremental induction of decision trees will be further investigated.

The main issue addressed for the document classification and understanding problems
is the representation of the layout structures. In the paper, the most abstract level of the
layout structure of documents has been described by means of a first-order logic formalism,
which can suitably represent both attributes and relations among layout components. Two
alternative page layout representations have been investigated: Purely symbolic and mixed
symbolic-numeric. In order to handle the latter representation, the specialization operator
of the first-order learning algorithm has been extended. The empirical results confirmed that
the on-line local discretization of numerical attributes greatly simplifies the learned rules
and generally decreases the learning time with no loss of predictive accuracy. As future
work, the application of the first-order learning algorithm to different levels of the layout
structure (e.g., frame1) will be investigated.

Appendix A

Proof of Theorem 1: Let S be an ordered list ofN real values with positive or negative
label. Scan be partitioned into two intervalsSL andSR. Without loss of generality, suppose
that SL is the admissible interval. We want to show that the minimizing thresholdT that
partitionsS in SL andSR cannot occur within a group of adjacent cases, all of which have
the same label. In general, assume thatT occurs somewere within a sequence ofnj vaues
with the same label, wherenj ≥ 2. Without loss of generality, assume that this label is+.
Assume thatn+ cases in this sequence ofnj positive cases are less thanT , 0 ≤ n+ ≤ nj .
Figure A1 illustrates the situation. Our sequence consists ofnj examples that have values
greater thanT1 and less thanT2, whereT1 andT2 are boundary points.

Let L be cases inS with values< T1, and R cases inS with values> T2, where
0≤ L , R≤ N− nj . Note thatnj + L + R= N by definition. LetL+(L−) be the number
of positive (negative) cases inSwith values less thanT . We will show that

H(L+ + n+, L−) = L−

L+ + n+
info(L+ + n+, L−)
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Figure A1. Modeling a possible partition.

is minimized atn+ = 0 or atn+ = nj , thus forcingT to coincide with one of the boundary
pointsT1 or T2.

1st case:L+ ≥ L−

The addition ofn+ further positive cases to the initial set ofL+ positive cases causes the
decrease of both the entropyinfo(L+ + n+, L−) and of the ratio

L−

L+ + n+

Therefore,H(L+ + n+, L−) is strictly decreasing and the minimum is obtained forn+ = nj .

2nd case:L+ < L−

Let us compute the first derivative ofH(L+ + n+, L−) with respect ton+.

d

dn+
H(L+ + n+, L−)

= − L−

(L+ + n+)2

[
− log

L+ + n+

L + n+
+ (L−)2

(L+ + n+)2
log

L−

L + n+

]
Therefore, we have

d

dn+
H(L+ + n+, L−) = 0

only if

log
L+ + n+

L + n+
= (L−)2

(L+ + n+)2
log

L−

L + n+

This equality holds whenL+ + n+ = L−, that isn+ = L− − L+. Note that this difference
is not negative sinceL+ < L−.

Whenn+ < L− − L+ thenL+ + n+ < L−, thus we have the following inequalities:

log
L+ + n+

L + n+
< log

L−

L + n+
<

(L−)2

(L+ + n+)2
log

L−

L + n+

since now (L−)2
(L++n+)2 > 1.
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Figure A2. Behaviour of the functionH(L+ + n+, L−) whenL+ < L−.

Therefore, whenn+ < L− − L+ we have:

d

dn+
H(L+ + n+, L−) > 0

that isH(L+ + n+, L−) is strictly increasing in the right open interval [0, L− − L+[.
Furthermore, whenn+ > L− − L+, that isn+ + L+ > L−, the following inequalities

hold:

log
L+ + n+

L + n+
> log

L−

L + n+
>

(L−)2

(L+ + n+)2
log

L−

L + n+

since now (L−)2
(L++n+)2 < 1.

Therefore, whenn+ > L− − L+ we have:

d

dn+
H(L+ + n+, L−) < 0

that isH(L+ + n+, L−) is strictly decreasing in the open interval ]L− − L+,+∞[.
To sum up, the entropic function H increases up to a maximum inL−−L+, then decreases

towards zero asn+ increases (see figure A2).
It is easy to prove thatH(L+, L−) = H(L+ + n+, L−) when

n+ = (L−)2− (L+)2
L+

Therefore, we can conclude that ifT2 < (L−)2−(L+)2
L+ then H(L+ + n+, L−) is mini-

mized forn+ = 0, while if T2>
(L−)2− (L+)2

L+ then it is minimized forn+ = nj . In the case
T2= (L−)2−(L+)2

L+ , the entropy is minimized in both extremes of the interval.
This proves thatT must be a boundary point.
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html

2. A rule iscompleteif it covers all positive examples.
3. A rule isconsistentif it covers no negative example.
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