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Abstract. This paper presents IDL, a prototypical dig-
ital library service. It integrates machine learning tools
and intelligent techniques in order to make effective, ef-
ficient and economically feasible the process of capturing
the information that should be stored and indexed by
content in the digital library. In fact, information cap-
ture and semantic indexing are critical issues when build-
ing a digital library, since they involve complex pattern
recognition problems, such as document analysis, clas-
sification and understanding. Experimental results show
that learning systems can effectively and efficiently solve
all these problems.
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1 Introduction

The development of digital libraries requires the appli-
cation of advanced methods and techniques from several
disciplines. A digital library is a distributed collection
of textual and/or multimedia documents, therefore one
of the main problems concerns the acquisition and stor-
ing of information. The recognition of relevant parts of
a semi-structured text, such as cross-references to other
documents, may require a variety of methods ranging
from simple text processing techniques to more complex
natural language processing tools. Advanced image an-
alysis techniques may be involved in the automated ex-
traction of relevant features from document images or
video frames. Storing multimedia documents into DBMS
originally designed for business applications presents sev-
eral difficulties, so that it becomes necessary to resort

to the more recent database technologies. Another im-
portant problem of a digital library is the organization
of data, namely the way in which documents are clas-
sified and indexed. The manual creation of an index is
an unsuitable approach for the problem, because of the
large volume of data. Studies in the field of text cate-
gorization can be applied in the case of textual docu-
ments, while sophisticated pattern recognition techniques
may be required for images, and innovative speech under-
standing tools for audios. Finally, the information re-
trieval service provided by a digital library should also
take into account the variety of users, who adopt terms
from the domains about which they are most familiar.
Also, the many ways in which users interact with a dig-
ital library should be captured by the interfaces, that
should be adaptive with respect to the modalities in
which users intend to express their needs and receive
results.

A common aspect to many problems presented above
is the need of knowledge in order to solve them in an
efficient and effective way. Knowledge on the possible ref-
erence styles adopted in articles and books is essential to
recognize cross-references between semi-structured tex-
tual documents. Knowledge on the properties of image
segments enclosing textual and non-textual content is re-
quired to separate text from graphics in raster images of
documents. Studies on formal languages for knowledge
representation may help to solve the problem of multi-
media document modeling. The automated classification
of multimedia documents on the ground of extracted fea-
tures is possible only if knowledge on the functions that
map such features into some document classes is given.
An ontology provides the system with knowledge on syn-
onyms, hyponyms and hyperonyms of terms the user is
familiar with (Goñi et al. 1997; Weinstein and Alloway
1997; Weinstein and Birmingham 1997). User models are
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useful pieces of knowledge exploited by adaptive user
interfaces.

In this article, we will use the term “intelligent” to
characterize those digital libraries that make pervasive
use of knowledge in all services provided to their different
users. AI methods that acquire and manipulate know-
ledge play a fundamental role in providing innovative so-
lutions to all problems of data collection, transformation,
organization, representation, and retrieval that charac-
terize a digital library (Fox 1994). In particular, machine
learning methods that provide computational solutions
for automatically acquiring new knowledge and for orga-
nizing existing knowledge, become crucial for the devel-
opment of a truly intelligent digital library.

Building an effective and efficient digital library ser-
vice is the task of a project that we started recently. This
project is the natural evolution of an early project on au-
tomated document processing started in 1991 (Esposito
et al. 1994). Since the beginning, it has been clear that
the key issue of the project was an effective integration of
tools for information compression, storage, organization,
retrieval, and navigation, as well as with friendly and
world-wide available standard graphical user interfaces
(GUIs), and multimedia technology. One of the peculiar-
ities of our project lies in the role that learning systems
can play for information capture, semantic indexing and
user modeling.

The term information capture denotes the task of set-
ting information items free of the physical medium on
which they are stored. When the physical medium is pa-
per, information capturing involves the conversion of data
from a paper format into a digital one. This transform-
ation requires a solution to several problems, such as
the separation of text from graphics, the classification of
the document, the identification (or semantic labeling)
of some relevant components of the page layout, and the
transformation of portions of the document image into
sequences of characters. In the literature, the process of
breaking down a document image into several layout com-
ponents is called document analysis, while the process of
attaching semantic labels to some layout components is
named document understanding (Tang et al. 1994). Fur-
thermore, the term document classification has been in-
troduced to identify the process of attaching a semantic
label (a class name) to the whole document on the ground
of its layout alone (Esposito et al. 1994). These three pro-
cesses are preliminary to the application of an Optical
Character Recognizer (OCR) to specific portions of the
document bitmap with the aim of extracting the text. In
this way, we aim at the high-level understanding of the
semantic content of the document, which is the conditio
sine qua non to index the information in the library ac-
cording to its content (semantic indexing).

This paper presents IDL (Intelligent Digital Library),
a prototypical intelligent digital library service that uses
several learning systems to support both the information
capture and human-computer interaction. In the next

section, the role of AI methods in the problem of con-
verting data from a paper format into a digital one is
addressed. In particular, we describe the functional archi-
tecture of WISDOM, the interface used by IDL to per-
form the four tasks of document analysis, classification,
understanding, and text extraction. The application of
the learning systems integrated in IDL to the problems
of document classification, document understanding and
user modeling are presented in Sect. 3. Learning systems
are just some of the application enablers of IDL: a com-
plete description of the architecture of IDL, of the object
model of the repository, and of the (meta-)query language
defined for this model are given in Sect. 4. The different
roles of the users of the digital library, namely administra-
tor, librarian and end-user are explained in Sect. 5, while
the two levels of adaptivity of end user interfaces are illus-
trated in Sect. 6. Section 7 reports the conclusions and the
plan of the future work on IDL.

2 Intelligent techniques for paper document
processing

WISDOM (Windows Interface System for DOcument
Management) is the interface used by IDL as the front-
end to transform printed information into a symbolic rep-
resentation (Malerba et al. 1997b). This transformation
process is performed in four distinct steps: document an-
alysis, document classification, document understanding
and, finally, text recognition with an OCR. The distin-
guishing feature of WISDOM is the use of a knowledge
base that is automatically built using several machine
learning tools and techniques. Each authenticated user
of the interface has his/her own knowledge base. Rules
in the knowledge base are applied in the first three pro-
cessing steps, while rules used in the text recognition
phase are embedded in the commercial OCR linked to the
interface.

WISDOM can manage multi-page documents, each
of which is a sequence of pages. The definition of the
right sequence is the responsibility of the user, since the
scanner is able to scan a single page at time. Pages
of multi-page documents are processed independently of
each other in all steps, though results concerning dis-
tinct pages of the same document are finally grouped in
a single file. For this reason, the following description of
the document processing flow will mostly concern single
pages, with some occasional reference to problems related
to multi-page documents.

2.1 Pre-processing and segmentation

The processing flow of WISDOM is shown in Fig. 1. Ini-
tially, each document page is scanned with a resolution of
300 dpi and thresholded into a binary image. The bitmap
of an A4-sized page takes 1.092 MB and is stored in TIFF
format. In order to convert the pixel representation of
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Fig. 1. WISDOM processing flow

the page into a structured set of symbolic entities, which
are appropriate for computerized information processing,
the system must segment the page as the first step. How-
ever, the result of the segmentation algorithm used in
WISDOM depends on both the skew angle (i.e., the orien-
tation angle of text lines in the page), and the choice of
some critical parameters. To make the system less vul-
nerable to non-zero skew angles and/or arbitrary parame-
ter definitions, some pre-processing algorithms have been
integrated.

In particular, the skew angle is detected by means of
a study of the horizontal projection profile of the page
image. This profile is a histogram that represents the
total number of black pixels for each row of the bitmap.
The histogram has sharply rising peaks with width equal
to the character height when text lines span horizontally,
while it shows smooth slopes when the raster image has
a large skew angle. Thus the skew angle can be estimated
as the angle that maximizes the mean square deviation of
the histogram. The peak-finding algorithm used in WIS-
DOM is described in (Ciardiello et al. 1988). The esti-
mated skew angle is finally suggested to the user when
he/she invokes the ‘Rotate’ function from the menu.

The study of the horizontal profile of the docu-
ment allows WISDOM to estimate the complexity of the

document as well. This parameter is computed as the
ratio of the mean distance between peaks and the peak
width, and it is greater than (lower than) 1.0 for simple
(complex) documents. The complexity factor affects the
smoothing parameters used in the segmentation phase.
The estimated complexity is suggested to the user when
the ‘Analyze layout’ function is invoked.

The page is segmented by means of a fast top-
down technique called Run Length Smoothing Algo-
rithm (RLSA) (Wong et al. 1982). This algorithm con-
sists of four steps: 1) horizontal smoothing; 2) vertical
smoothing; 3) logical AND of the two smoothed im-
ages; 4) final horizontal smoothing. Parameters used
in the smoothing operations depend on the complexity
of the document. In order to speed up the segmenta-
tion process, the RLSA does not operate on the original
bitmap, but on a reduced document image with a reso-
lution of only 75 dpi (70 KB for an A4-sized document).
The result of the segmentation process is a list of rect-
angular areas, called blocks, corresponding to printed
areas in the page image. Each block is easily described
by a pair of coordinates, namely top left-hand corner
and bottom right-hand corner. Note that the assumption
that printed areas are rectangular encompasses the as-
sumption that all text lines have no skew. This explains
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the need of evaluating the page skew and rotating the
image.

2.2 Machine learning for block classification

Page segmentation identifies blocks that may contain text
or graphic information. It is important to label these
blocks according to the type of content. In this way the
separation of text from graphic data is complete, so that
subsequent processing stages may operate exclusively on
the appropriate type of information (e.g., an OCR will be
applied only to textual components).

This separation problem can be reformulated as
a classification (or discrimination) problem, where the
classes are text block , horizontal line, vertical line, picture
(i.e., halftone images), and graphics (e.g., line drawings).
Traditionally, linear discriminant analysis techniques
have been used to classify blocks (Wong et al. 1982; Wang
and Srihari, 1989; Shih and Chen, 1996); the only ex-
ception is the rule-based classification method by Fisher
et al. (1990). In WISDOM, a decision tree classifier per-
forms this task, but, unlike the approach of Fisher et al.,
the classifier is not hand-coded. The decision tree is in-
duced from a set of training examples (blocks) of the
five classes. Only ten numerical features are used to de-
scribe each block, namely: 1) height; 2) length; 3) area;
4) eccentricity; 5) total number of black pixels in the
reduced bitmap; 6) total number of black pixels in the
segmented block; 7) number of white-black transitions in
the reduced bitmap; 8) percentage of black pixels in the
reduced bitmap; 9) percentage of black pixels in the seg-
mented block; 10) mean horizontal length of the black
runs in the reduced bitmap. The choice of a “tree-based”
method instead of the more common generalized linear
models is due to its inherent flexibility, since decision
trees can easily handle complicated interactions among
features and give results that are simple to interpret.

In a previous study, a decision tree was induced using
a set of 5473 examples of pre-classified blocks obtained
from 53 documents of various kinds. The system used
for this learning task was an extension of C4.5 (Quinlan
1993) that implemented several techniques for decision
tree pruning. A study of different decision tree pruning
methods in this domain of block classification has shown
that pruning is generally beneficial, since it reduces the
size of the decision tree and increases its predictive accu-
racy (Esposito et al. 1997a). The best result we observed
featured an average accuracy above 97%, so we decided
to embed the decision tree classification procedure into an
early version of WISDOM.

The main limit of this solution is that the decision
tree learner operates offline: it is not possible to revise the
decision tree when some blocks are misclassified, unless
a new tree is generated from scratch using an extended
training set. Furthermore, some blocks can be considered
text for some users and graphics for others, as in the case
of a logo. To give the user the possibility of training the

system online, systems for the incremental induction of
decision trees have been taken into consideration. Such
systems revise the current decision tree, if necessary, in re-
sponse to each newly observed training instance. Many of
them have been presented in the literature, namely ID4
(Schlimmer and Fisher 1986), ID5R (Utgoff 1989), and
ITI (Utgoff 1994). The system that we have currently em-
bedded in WISDOM is ITI, which is the only incremental
system able to handle numerical attributes such as those
used to describe the blocks.

In the normal operation mode, ITI first updates the
frequency counts associated to each node of the tree as
soon as a new instance is received. Then it restructures
the decision tree according to the updated frequency
counts. In this operation mode, ITI builds trees with al-
most the same size and the same predictive accuracy
as those produced by C4.5. In fact, in a 10-fold cross-
validation experiment on the above mentioned set of 5473
examples of pre-classified blocks, we observed the follow-
ing results:

Average no. of nodes Predictive accuracy

C4.5 89.8 96.80
ITI 2.5 92.4 96.88

In this experiment, both systems were allowed to
prune the induced trees using their default pruning
methods (error-based pruning for C4.5 and minimum de-
scription length pruning for ITI). We can conclude that
the choice of ITI as the decision tree induction system
does not affect the accuracy of WISDOM.

The normal operation mode guarantees building the
same decision tree independently of the order in which ex-
amples are presented. Despite this interesting property, it
has been observed that ITI creates huge files (more than
10 MB) when trained on the set of 5473 instances used in
the feasibility study. The reason for this space inefficiency
is due to the need of storing frequency counts of all at-
tributes of training examples in each node of the induced
tree. This inefficiency can be contained (about 1.5 MB)
when the system operates in the error-correction mode,
since frequency counts are updated only in case of mis-
classicafion. In this way, however, the independence of the
induced tree from the order of presentation of training in-
stances is no longer guaranteed. Luckily, we noticed that
a single user can obtain satisfying results with a lower
number of training instances, since printed documents
managed in a specific application often have a similar
layout. For instance, on a set of 112 documents used in
another experiment, we obtained high accuracy with de-
cision trees that take less than 80 KB. Therefore, ITI has
been integrated in a new release of WISDOM, and two
new functions have been added to the interface: the inter-
active correction of the results of the block classification,
and the revision of the block classifier.
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2.3 Knowledge-based layout analysis

A segmented page is certainly easier to manage than the
original bitmap, since the number of blocks is generally
less than one hundred. Switching from the raster image
space to the corner space turns out to be of great com-
putational advantage. However, this new page represen-
tation is still too detailed. Generally, we do not need so
much information for the subsequent phases of document
classification and understanding. Layout analysis is the
perceptual organization process that aims to detect struc-
tures among blocks. The result is a hierarchy of abstract
representations of the document image, called the geo-
metric (or layout) structure of the document. The leaves
of the layout tree (lowest level of the abstraction hierar-
chy) are the blocks, while the root represents the whole
document. In multi-page documents, the root represents
a set of pages, where a page is a rectangular area that en-
closes printed information of a single bitmap. A page may
group several layout components, called frames, which
are still rectangular areas of interest in the image of
a document page. An ideal layout analysis process should
produce a set of frames, each of which can be associated
with a distinct semantic label, such as title and author of
a scientific paper. In practice, however, a suboptimal lay-
out structure in which it is still possible to distinguish the
logical meaning of distinct frames should be considered
a good output of the layout analyzer.

Many approaches have been proposed for the extrac-
tion of the layout structure from the digital image. In
WISDOM we adopted a knowledge-based approach that
exploits generic knowledge and rules on typesetting con-
ventions in order to group basic blocks together into
frames (Malerba et al. 1995). Such knowledge is indepen-
dent of the particular class of processed documents and
turns out to be appropriate for a range of problems.

More precisely, the layout analysis is performed in two
distinct steps (Esposito et al. 1995):

1) A global analysis of the document image in order to
determine possible areas containing paragraphs, sections,
columns, figures and tables. This step is based on an it-
erative process in which the vertical and horizontal his-
tograms of text blocks are alternatively analyzed in order
to detect columns and sections/paragraphs respectively.

2) A local analysis of the document aiming at grouping
together blocks that possibly fall within the same area.
Perceptual criteria considered in this step are:

– Proximity: Adjacent components belonging to the
same column/area are equally spaced.

– Continuity: Overlapping components.
– Similarity: Components of the same type, with an al-

most equal height.

Pairs of layout components that satisfy some of these
criteria may be grouped together. In the grouping pro-
cess the type of information of composing blocks is kept
whenever possible. Each layout component is associated

Fig. 2. Document analysis

with one of the following type: text, horizontal line, ver-
tical line, picture, graphics, and mixed. More precisely,
when the constituent blocks of a logical component are
homogeneous, the same type is inherited by the logical
component, otherwise the associated type is set to mixed.
In Fig. 2, the output of the document analysis process
performed by WISDOM is shown. By clicking on the ra-
dio buttons ‘text’, ‘horizontal line’, ‘vertical line’, ‘image’,
‘graphics’, and ‘mixed’ it is possible to only display a par-
ticular type of logical component, while by clicking on the
radio buttons ‘Frame 2’, ‘Frame 1’, ‘Set of Lines’, ‘Lines’,
and ‘Basic blocks’ it is possible to choose a level of the
layout hierarchy to be displayed. The result of the layout
analysis process is a file describing the hierarchy of lay-
out components, made up of blocks (at the bottom), lines,
sets of lines, first frames, and second frames (at the top).

2.4 The rule-based system for document classification
and understanding

After having detected the layout structure, the logical
components of the document, such as title, authors, sec-
tions of a paper, can be identified. The logical compo-
nents can be arranged in another hierarchical structure,
which is called logical structure. The logical structure is
the result of repeatedly dividing the content of a docu-
ment into increasingly smaller parts, on the basis of the
human-perceptible meaning of the content. The leaves
of the logical structure are the basic logical components,
such as authors and title. The heading of an article en-
compasses the title and the author and is therefore an
example of a composite logical component. Composite
logical components are internal nodes of the logical struc-
ture. The root of the logical structure is the document
class, such as an article published in the ICML Pro-
ceedings. Currently, WISDOM supports two-level logical
structures, where the document class is the only compos-
ite logical component.
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The problem of finding the logical structure of a docu-
ment can be cast as the problem of associating some lay-
out components with a corresponding logical component.
In WISDOM this mapping is limited to the association
of a page with a document class (document classification)
and the association of second frames with basic logical
components (document understanding). The computa-
tional strategy adopted for understanding a document
consists of a hierarchical model fitting, which limits the
range of labeling possibilities. More precisely, the docu-
ment is first matched against models of classes of docu-
ments and then against models of the logical components
of interest for that class. Since models are rules expressed
in a first-order logic language, the operation of model fit-
ting becomes a classical matching test between a logic
formula that describes a model and another logic formula
that represents the document layout. Indeed, WISDOM
describes the frame 2 level of the layout hierarchy by
means of the following:

– attributes, such as the height of a frame (numeric),
width of a frame (numeric), type of a frame (text, ho-
rizontal line, and so on), coordinates of the centroid of
a frame (numeric).

– binary relations, such as part-of, on-top, to-right
(boolean), and relative alignment (only by left col-
umn, only by right column, by both columns, by
middle column, only by upper row, only by lower row,
by both rows, and by middle row).

In Fig. 3, a partial description of the page layout of the
document in Fig. 2 is reported. The description is a logical
conjunction of literals of the form:

f(t1, · · · , tn) = Value

where f is an n-ary function symbol, called descriptor , tis
are constant terms, and Value is one of the possible values
of f ’s domain. The choice of a first-order logic language
answers to the requirement of flexibility and generality.

Both the rules used for the classification and under-
standing process are automatically learned from a set of
training documents for which the user has already pro-

Fig. 3. First-order description of a document

Fig. 4. Classification and understanding

vided the correct class and frame labels. By looking at
each class or frame label as a distinct concept to be
learned, it is possible to apply conceptual inductive learn-
ing methods whose final products are rules expressed in
high-level, human-oriented terms and forms. The concep-
tual learning systems used to generate such rules for WIS-
DOM are described in the next section.

Once the logical components have been detected (see
Fig. 4), the system allows the user to set up the text ex-
traction process by selecting the logical components to
which the OCR has to be applied. Selective application
of an OCR to variable areas of the raster image makes
the interface an appropriate front-end for digital libraries.
The result of document processing is a text file that con-
tains all the relevant information on the original docu-
ment image (namely, the heading of the original TIFF
file), on the layout structure, on the class and frame la-
bels, as well as on the text read in some frames by the
OCR. This file with extension “.lay” can now be used to
feed the digital library.

3 The learning server

The learning systems that perform the task of automati-
cally acquiring the classification patterns (document clas-
sification) and the theory for the “semantic” indexing
of documents (document understanding) constitute some
of the application enablers in the system architecture of
IDL, a prototypical intelligent digital library service (Se-
meraro et al. 1997a, 1997b). Machine learning methods
could also be used to improve the user interaction allow-
ing the design of adaptive interfaces. Indeed it is possible
to induce the user interaction model by capturing the ap-
propriate raw data for representing and classifying the
individual user’s observed behavior. The inferences that
can be drawn from the analysis of the interactions are use-
ful to determine the changes (adaption) which the Digital
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Library system can accomplish to respond to the informa-
tion needs of a specific “recognized” user. In this section
the conceptual learning systems for document classifica-
tion and understanding are described as well as the user
modeling activity aiming at automatically acquiring the
classification patterns of the typical users of Digital Li-
brary services.

3.1 Machine learning for document classification and
understanding

As mentioned above, the document classification patterns
and the semantic labels are automatically induced from
the first-order descriptions of the layout of some train-
ing documents: each training document is associated with
a class and a set of labeled layout components. Therefore,
two learning problems can be defined: first, induce models
of classes of documents, and then find models of the logi-
cal structures of each class.

Initially, a supervised inductive learning system that
implements a hybrid approach was applied to the docu-
ment classification task (Esposito et al. 1990). In this
experiment, the layout of each document was described
by numeric and symbolic features. A parametric method
for linear classification used the numeric features, while
a conceptual method induced some models from the sym-
bolic features alone. The combination of the predictions
made by the two methods provided the best results in
terms of simplicity and predictive accuracy of the learned
models. This hybrid approach operates in a batch way:
all models are learned from scratch each time the learn-
ing process is activated and the batch strategy is the best
way to build the “initial knowledge base” that represents
the classification patterns resulting from a training phase
based on a statistically significant number of examples.
More recent experiments showed promising results also
for an incremental approach in which models are pro-
gressively specialized and generalized as new incoming
documents are misclassified or not classified at all (theory
revision) (Semeraro et al. 1995). This is a very important
issue, since the dynamic nature of digital library appli-
cations requires a progressive adjustment of the induced
classification patterns instead of learning the whole the-
ory from scratch every time a new document is added
to the repository. Thus the best strategy is to learn an
initial theory in a batch way and then refine it incremen-
tally any time new documents become available. When
the number of refinements becomes high, the theory will
be learned again from scratch from the whole set of avail-
able documents.

These results and motivations led us to closely exam-
ine the effectiveness of the incremental methodologies on
the problem of classifying scientific papers. In this set-
ting, the layout of the first page of each paper is repre-
sented by a first-order logic description such as that in
Fig. 3. We considered a database of 92 scientific papers,

belonging to three different classes, namely ISMIS (Pro-
ceedings of the International Symposium on Method-
ologies for Intelligent Systems), PAMI (IEEE Transac-
tions on Pattern Analysis and Machine Intelligence), and
ICML (Proceedings of the International Conference on
Machine Learning). Each paper is a positive example for
the class it belongs to and, at the same time, is a negative
example for all the other classes. For each class, the learn-
ing process has been performed both in a batch and in an
incremental way. In the latter case, the generalization and
specialization tasks have been run separately. The experi-
ments have been replicated 33 times, by randomly split-
ting the database of 92 papers into two subsets, namely
a learning set and a test set. In turn, the learning set has
been subdivided into training and tuning sets. The learn-
ing set has been exploited in two distinct ways, according
to the mode – batch or incremental – adopted for the
learning process. For the batch mode, this set has been
entirely given to INDUBI/CSL (Malerba et al. 1997a), an
empirical learning system adopting the VL21 representa-
tion language (Michalski 1980), with both examples and
rules expressed as first-order normal clauses. It imple-
ments a separate-and-conquer search strategy at a higher
level while at the low level a beam search is performed.
More precisely, INDUBI/CSL starts with a seed-example
of the target concept and generates a set of the best gen-
eralizations that are consistent with respect to all of the
negative examples. Then the best of these generalizations
is chosen according to some heuristics (Michalski 1980)
taking into account several criteria. The positive exam-
ples that are covered by such a generalization are removed
from their set and the learning algorithm is restarted
on this smaller set to generate other rules for the same
concept. At the low level, each generalization is built by
adding to the most general clause a subset of the seed-
example literals, with constants previously turned into
variables, provided that the rule remains consistent with
the negative examples.

For the incremental mode, only the training set has
been used in order to produce the initial classification
theory, while the tuning set has been exploited to incre-
mentally correct omission and commission errors made
by the theory, if any, through the incremental learning
system, called INCR/CSL (Esposito et al. 1997b). This
systems adopts the same representation language used by
INDUBI/CSL while the learning algorithm implemented
is incremental. The aim is to compute the target clas-
sification rules by a progressive refinement of the start-
ing rules through operators performing generalization or
specialization, when the new/next (positive or negative,
respectively) training example is not correctly classified
by the current version of the rules. Unlike INDUBI/CSL,
such a learning algorithm can exploit a previously gener-
ated version of the rules, reducing in this way the learning
effort needed.

The tuning set is made up of only positive (negative)
examples in every run concerning the generalization (spe-
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Table 1. Results on the problem of document classification

average min. max. average min. max. average difference
time time time PA. PA. PA. time PA.

batch 137.424 68 208 92 81 100 – –
ISMIS incr-gen 67.879 24 129 90 74 100 69.545 2

incr-spec 56.788 36 108 97.061 85 100 80.636 −5.061

batch 94.364 65 135 94 81 100 – –
PAMI incr-gen 58.03 26 209 94.212 78 100 35.334 −0.212

incr-spec 67.363 45 127 91.394 81 100 27 2.606

batch 96.576 57 133 93.636 81 100 – –
ICML incr-gen 81.109 32 216 90.697 81 100 13.666 2.939

incr-spec 94.182 44 152 94.636 81 100 1.394 −1

cialization). Lastly, the test set has been exploited to eval-
uate the predictive accuracy of the learned theories on
unclassified documents.

Table 1 shows the results obtained by comparing the
theories learned in batch mode with those learned in-
crementally along two dimensions, namely their predic-
tive accuracy on the test set and the computational time
taken by the learning system to produce the theories. The
goal of this comparison is to see if incrementally adjust-
ing the theory on the grounds of new evidence generates
polymorphic classification patterns, decreases the predic-
tive accuracy and significantly affects the computation
learning time. Specifically, the batch time is relative to
the training set for the batch mode, while the incremental
time is computed as the sum of the computational time
concerning the training set for the incremental mode plus
the time concerning the tuning set. Values concerning the
predictive accuracy are percentages, while those concern-
ing the time are expressed in seconds. All the values refer
to the averages on the 33 runs.

Table 2 illustrates the results of the t-test, a statistical
method exploited to evaluate the significance of the ob-
served differences as to predictive accuracy and computa-
tional time for each class. This test has been performed as
a two-sided test at a 0.01 level of significance. Each entry

Table 3. Results on the problem of document understanding

average min. max. average min. max. average difference
time time time PA. PA. PA. time PA.

title batch 823.576 228 1483 91.273 84 97 – –
incr 334.788 65 1578 86.394 76 95 488.79 4.879

authors batch 606.758 183 1238 92.909 84 98 – –
incr 388.03 88 1768 86.788 74 95 218.73 6.121

abstract batch 434.576 90 876 95.212 85 100 – –
incr 172.788 23 838 91.485 84 98 271.79 3.727

paper batch 753.515 168 1802 93.394 82 100 – –
incr 327.03 48 1786 90.061 80 98 426.49 3.333

Table 2. Statistical results on the problem of document
classification

time PA.
t value signif. % t value signif. %

ISMIS incr-gen 10.833 0.0001 2.201 0.351
incr-spec 9.954 0.0001 −4.289 0.0002

PAMI incr-gen 6.379 0.0001 −0.229 0.8201
incr-spec 8.409 0.0001 3.139 0.0036

ICML incr-gen 1.802 0.0809 3.39 0.0019
incr-spec 0.490 0.6276 −1.22 0.2315

in the table contains the t-value and the corresponding
significance value.

It is possible to note that, on the grounds of the results
obtained by the t-test, the batch-learned theories and the
incrementally-learned ones are comparable as to predic-
tive accuracy: in some cases the difference is statistically
significant in favor of the batch system, in other cases it is
in favor of the incremental one, and in others there is no
statistically significant difference. On the contrary, there
is an improvement when learning the theory in incremen-
tal mode with respect to learning it in batch mode, as
regards the computational time.
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Table 4. Statistical results on the problem of document
understanding

time PA.
t value signif. % t value signif. %

title 6.532 0.0001 5.389 0.0001
authors 3.585 0.0011 6.89 0.0001
abstract 6.7 0.0001 3.983 0.0004
paper 5.849 0.0001 3.138 0.0036

As to the document understanding task, a different
approach has been tested. In this case, indeed, we have
to learn models of the logical components which refer to
a part of the document rather than to the whole docu-
ment. Again, we can compare the theories learned in
batch mode to those learned incrementally (Table 3), and
we perform the t-test on those results in order to evalu-
ate the significance of the observed differences (Table 4).
In this case there is a statistically significant difference
in favor of the batch-learned theories as regards predic-
tive accuracy, but the great gain in computational time
in favor of the incremental system suits our application
requirements.

3.2 Machine learning for user modeling

A fundamental problem to cope with when developing
a system used by several people is to be able to recog-
nize user profiles in order to adapt the interface to user
needs, with the aim of improving the overall usability of
the system.

Machine learning techniques can be used to infer user
models with the aim of building an intelligent agent that
collects the behavior of the typical users of a digital li-
brary service, provides each user with an interface that
can speed up the process of understanding the organi-
zation and the content of the chosen digital library, and
properly assist him/her during all the steps necessary to
retrieve the desired information. Specifically, the main
function of the Learning Server is to automatically assign
each user of a digital library to one of some pre-defined
classes, on the grounds of information drawn from real
interaction sessions with the system. In the literature of
human-computer interaction, this activity is known as in-
teraction modeling (Banyon and Murray 1993).

The reasons why a user consults a digital library can
be the most disparate ones, from real needs for biblio-
graphic search, to interpreting data, following cross ref-
erences, checking the content relations and information
overlapping, personalized exploitation etc. After all, each
user has his/her own profile, thus when using the sys-
tem, he/she will behave differently from any other user.
Obviously it is impossible, even for an intelligent system,
to adapt its behavior to each single user. Nevertheless,
it is desirable to use intelligent techniques in order to
understand which kind of remote user it is interacting

with: in this way, it becomes possible to design more ef-
fective help facilities (through contextual helps, different
interaction modalities, personalized dialogues, etc.). Our
approach takes advantage of machine learning methods
and techniques, as pointed out by recent work in litera-
ture (Moustakis and Hermann 1997; Pazzani and Billsus
1997). Specifically, interaction modeling can be cast as
a supervised learning problem by considering user inter-
actions with the digital library as training examples for
a learning system, whose goal is to induce a theory for
classifying the users.

The first step requires the definition of the classes of
users that seem to be meaningful for the system, and the
identification of the features that properly describe them,
with the aim of better characterizing each class of users
and discriminating it from all the other classes.

In a first experiment, among all the possible generic
users of a digital library, we choose only the class of the
end users, namely Novice, Expert and Teacher , based
upon their different skills and motivations. This identifies
three distinct groups of users, characterized by a different
(growing) degree of familiarity with the specific library
service and, more generally, with the domain of libraries
and with online access to document collections.

In order to choose a suitable language for represent-
ing user interactions, all the characteristics that could
be necessary and useful to understand the type of user
were investigated; the final selected features should be de-
tected from the raw data stored in a file associated to each
user. Basic relevant characteristics are those concerning
the way in which users exploit the capabilities of the digi-
tal library search engine, such as date and beginning time
of session, the specific class of documents chosen, search
index(es) used, the criterion selected to sort the results
of the search, the number of documents obtained as re-
sult of the search, and the types of errors performed when
interacting with the system. The formal description of
these characteristics with the user class label consitute
the training data for a supervised learning system.

Specifically, the learning system C4.5/C4.5RULES
(Quinlan 1993) is used in order to induce a decision tree
and a set of rules allowing the system to autonomously
classify the users interacting with digital library services.

Whenever any client connects to the digital library as
a user of the system, the corresponding interaction in-
formation (logs) is exploited to generate a new example
that the learning server will classify on the ground of the
inferred rules. The way in which rules are consulted by
the learning server (and the existence of the classification
rules themselves) is completely transparent to the user of
the system.

C4.5/C4.5RULES has been customized in order to
work in a batch way to infer the classification theory from
the log files selected to train the system. The scheme
according to which the classification rules are induced
(training phase) and afterward used to classify a user (op-
erational phase) is given in Fig. 5. Furthermore, we are
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Fig. 5. Induction/classification through the learning server

currently investigating the possibility of using incremen-
tal learning systems (Esposito et al. 1997b) that avoid the
drawback of starting the learning process from scratch
each time new log examples become available.

4 The architecture of IDL: an insight

A digital library service is a set of modules that can be
classified as either resource managers or application en-
ablers. A resource manager is a program that represents
the only access path to the data contained in a protected
resource and is accessible to multiple, concurrent clients.
Intuitively, a protected resource is a data collection. An
application enabler is a software that allows a class of
users to make application programming easy and quick
(or to avoid it completely). The logical architecture of
IDL is shown in Fig. 6. The Repository is a protected
resource containing the actual collection of data that con-
stitutes the digital library. Usually, it consists of highly
structured items. Here, we use the word database rather
than information collection because in IDL it is a com-
mercial object-oriented DBMS, namely ObjectStore by
Object Design, Inc. Thus, the Repository is actually a set
of objects. More precisely, these objects constitute an in-
stance of an ObjectStore conceptual scheme that we de-
signed purposely for IDL. The document object model is
the conceptual schema according to which documents are Fig. 6. IDL architecture
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Fig. 7. Layout Structure and Logical Structure Object model

stored and (internally) represented in both the layout and
the logical structure.

The portion of the object model that allows us to store
(and retrieve) the objects related to the layout structure
of a document is given in Fig. 7a. For our purposes, we
defined a hierarchy of five distinct classes correspond-
ing to the levels of components in the layout tree (other
than Page): BasicBlock , LineBlock , SetOfLineBlock ,
FirstFrameBlock , and SecondFrameBlock . All the ob-
jects at any level share the same structure, therefore the
five classes have a common abstract superclass Block
(in Fig. 7a).

The information about the type of document is stored
in the portion of the document object model depicted in
Fig. 7b. Specifically, each class of documents in a digi-
tal library is defined as an instance of the object Doc-
Class. In fact, defining each class of documents as an
instance of a meta-level class – DocClass – allows us to
achieve a greater flexibility when the digital library needs
to be updated (by adding/deleting a new class of docu-
ments, through the methods InsertClass, DeleteClass of
the class DigitalLibrary). Moreover, as previously stated,
each class of documents is associated with a set of mean-
ingful types of logical objects, called logical labels, thus

adding a new class of documents requires the introduction
of a set of new logical labels. This is performed by creating
a new instance of the class Attribute for each logical label
(Fig. 7b).

Above the protected resource there is the digital li-
brary software (see again Fig. 6). It consists of five layers.
The lower layers are those more related to the machinery
used to implement the digital library service and ignore
the semantics of the repository, since they do not need to
know the format of the data stored in it. Specifically, the
Network Layer allows remote access to the library via In-
ternet, while the Operating System Layer makes available
all the functions of the operating system and ensures that
the users who require an access to the repository have
proper access rights. In detail, it maps names of the users
that issue a request to the proper locations by means of
the Name Server, and limits each user to what the admin-
istrator of the digital library (library’s custodian) permits
by means of the Authorization Server.

The layer of the Resource Managers mainly deals with
the management of documents, viewed at different levels
of abstraction. The lower box in this layer – ObjectStore
DBMS – is a database management system. The upper
box contains the Document Storage Subsystem, that is to
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say, the document storage and access software. It is in-
volved in both storing and retrieving items to and from
the library collection, and updating and searching the li-
brary catalogs. It is worth mentioning that its scope is
limited to aspects that are independent of the meaning
and the internal representation of information items in
the digital library. It is implemented as a client-server
tool.

As we claimed in the introduction, within the aim of
achieving the integration of heterogeneous DBs, the prob-
lem of overcoming the mismatches among the various
DBMS technologies must be faced. Therefore, with the
purpose of standardizing the system by freeing it from the
specific query languages supplied by the current commer-
cial products, instead of merely using the query language
of ObjectStore, we developed a (meta-)query language
based on first-order logic. It allows the user to formu-
late any query concerning the objects belonging to any
collection in an instance of an object-oriented model as
well as other kinds of DB models. The introduction of an-
other level of standardization in the system, the query
interpreter service, allows us to meet the aforesaid re-
quirement with little effort. Indeed, the only additional
requirement is a mechanism to convert the input queries,
in the proposed language, into the native query language
of the specific underlying DBMS.

The primitives of our query language are:

i) (<Object> IS IN <Class>)

ii) (THE <Attribute> OF <Object> IS <Value>)

where <Object>,<Class>, <Attribute>, and <Value>

are metasymbols that can be properly replaced by vari-
ables or constants in each query. The former kind of
primitives, called Class Query, allows us to answer mem-
bership class queries, such as “List all the documents in
the class of scientific papers”, or “Is the document #101
an instance of the class of business letters?”, while the lat-
ter, called Attribute Query, is useful to find objects whose
attributes meet specific conditions about their values. Ex-
amples of Attribute Queries are “List all the papers whose
author is John Smith” or “Who are the authors of the pa-
per #101?”. A query is a proper combination of these two
kinds of primitives through the logical operators AND,
OR.

The productions, expressed in extended BNF, of the
phrase structure grammar that generates the query lan-
guage are as follows:

<Query> ::= <AndQuery> { + <AndQuery> }

<AndQuery> ::= <ClassQuery> { & <AndQuery> } |

<AttributeQuery> { & <AndQuery> }

<ClassQuery> ::= (<Object> IS IN <Class>)

<AttributeQuery> ::= (THE <Attribute> OF

<Object> IS <Value>)

<Class> ::= <ClassName> | <Variable> |

<Pattern>

<Object> ::= <ObjectIdentifier> | <Variable> |

<Pattern>

<Attribute>::= <AttributeName> | <Variable> |

<Pattern>

<Value> ::= <Constant> | <Variable> |

<Pattern> | <Composite>

<Constant> ::= <Integer> | <Real> | <String> |

<ObjectIdentifier>

<Variable> ::= @<String>

<String> ::= { <Printable> - [@, ", ?, *] }

<Pattern> ::= { <Printable> - [@, "] }
<Composite> ::= "{ <Pattern> | <String> }N0 "
where:

<ClassName> denotes the name of a physical class in the
database;
<AttributeName> stands for the name of a physical at-
tribute of a database class;
<ObjectIdentifier> is the object identifier (OID) asso-
ciated to an object;
<Printable> represents any printable character;
Two or more strings of the kind <Pattern> or <String>,
present in <Composite>, have to be separated by blank
spaces or tabulations.

The layer of the Application Enablers makes available
several functionalities to the different users of the library,
and hides operating system and machine differences.

The lower level of application enablers is the Learn-
ing Server, that provides a suite of learning systems
that can be exploited concurrently by multiple clients
in order to perform document classification and docu-
ment understanding. As mentioned in Sect. 3, the appli-
cation of these tools is twofold: both to recognize pat-
terns and layout/logical structures of the documents in
the library, with the aim to create search indexes auto-
matically (Esposito et al. 1993), and to analyze end users’
interactions in order to set the default query of the system
according to their most frequent queries.

At the upper layer there are other tools that may be
useful for the different library clients. The Mailer enabler
implements a standard electronic mailing system. The
Document Manager is in charge of helping end users with
their special kinds of documents, mainly as regards their
presentation and manipulation. The Query Interpreter is
the inference engine that allows the user to formulate any
query concerning the objects in the library by a first-order
logic language.

The Browser enabler is a tool that allows the user
to navigate into the digital library. It is intended to be
exploited by people who do not know the organization
of the library. It produces on-the-fly an HTML file cor-
responding to the document required by the user. The
document bitmaps undergoing the preprocessing phase
have huge dimensions, therefore they would not be effec-
tively stored/managed/transferred in the IDL. Moreover,
by using just bitmaps it would be impossible to “interact”
with the text, in order, for instance, to perform a finer
search in it as well as to create hyperlinks among parts
of the same document or of different documents. This
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calls for the construction of an HTML generator mod-
ule, called HGENE , to automatically reproduce a stored
document as an HTML file, needing much less storage
space than the bitmap counterpart, and keeping the ori-
ginal nature of each part.

It is required that the generated HTML document be
an accurate replica of the original bitmap document as
to the layout structure. Thus, the document appearance
should be rearranged to reflect the original one indepen-
dently of factors such as the size of the window and the
browser utilized. This consideration holds in case the user
wants to print the document, too. Finally, the module
must be able to cope with the potential change in class
and/or attribute definitions by the librarian. The infor-
mation for carrying out all these tasks is stored in the
“.lay” file coming out from the document pre-processing
phase with WISDOM. So, what HGENE really does is
taking such files and extracting the data needed to recon-
struct the document layout.

The Folder enabler is used to create new folders, add
a document to a folder, and delete an existing folder. The
Editor Enabler is activated when a user wants to change
a document. This is possible on local copies of a docu-
ment, unless the user is the library’s custodian.

The Interface Layer implements the applications that
actually interface the users of the library. Currently,
a unique GUI based on any Web browser, allows the three
categories of IDL users to:

– create/delete a digital library (IDL administrator);
– manage a specific digital library, provided that he/she

possesses the proper access rights (library’s custodian,
or librarian);

– choose a specific digital library and query/browse it on
the basis of the content of its documents (end user).

The GUI is designed around a state-transition model,
with each state representing an HTML page. All the
HTML pages are dynamically generated by Common
Gateway Interface (CGI) scripts in C language in order to
reflect the current content of the repository.

5 Management and usage

There are three different kinds of persons who can inter-
act with IDL, in order to modify its content or just to
query it (according to the role that they play in it and to
the access rights owned): the Library Administrator, the
Library Custodians (or Librarians), and the End Users.

At the top level of this hierarchy we find the Library
Administrator, who is unique and whose fundamental
task is that of supervising access to the various libraries
involved in the system. A typical prerogative of the Li-
brary Administrator is the possibility to decide the inclu-
sion of a new library in (or the elimination of an already
existing one from) the system of federate libraries.

Each library involved in the system is managed by
a Library Custodian, who previously received the proper

password from the Library Administrator. Indeed, the ac-
cess rights owned by a Library Custodian allow him/her
to modify the content of the library he/she manages,
by adding, deleting or updating the classes of the docu-
ments in the library and the related search indexes (at-
tributes of the classes), as well as the documents them-
selves, which constitute the instances of the previously
mentioned classes.

The End User is any person who has access to IDL
via Internet in order to query it for the documents he/she
needs and to see them in digital format, if it is the case.
Each new user of a library (that is, each user who inter-
acts with IDL for the first time) is asked to enter his/her
own data, and then receives an identity code to be used in
any new access in the future.

After having defined the role that each of the above-
mentioned figures plays in the context of the Intelligent
Digital Library service, let us show a typical session with
IDL by the Library Custodian and the End User. We omit
showing a Library Administrator session, since his/her
functions are mainly managerial ones.

5.1 The Library Custodian

Any time a new library is included in the IDL system,
the Library Administrator assigns a personal password
to its custodian. From then on, the librarian will have
to enter it in a specific field of the homepage of the IDL
(Fig. 8) in order to act on the content of that library. The
system takes care of validating the password and, if the
control succeeds, gives him/her the possibility of oper-
ating. Then, a menu is displayed, which includes all the
possible kinds of actions he/she can perform.

If the insertion of a new class is chosen, the system
displays the names of the classes already existing in the
repository, and then asks for the name of the class to be
added, the number of its attributes and the name of each
attribute.

If the custodian wants to add a new attribute to an
existing class, he/she must choose that class and then,
after displaying the previously existing attributes related
to that class, he/she can insert the name of the new one.

Another possible choice is that of inserting one (or
more) new documents acquired from different kinds of
sources: from a text file containing data about the layout
structure of a document (“.lay” file), in the local host or
in a remote one, or from a list of layout files, which can be
newly created or already existing.

Conversely, the deletion of an existing document is
also possible, as well as of a class attribute after choosing
the class it belongs to, or even the deletion of a class of
documents.

A list of inspection options follows, whose aim is that
of summarizing the repository’s content. It is possible to
see the list of all the classes of documents contained in the
repository, with the related attributes. The custodian can
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Fig. 8. IDL Homepage

also have a description of the structure of each document
in the repository.

The last option allows for a brief numerical description
of the whole content of the repository, by means of a table.

5.2 The End User

The End User, too, can enter and query one of the sys-
tem’s libraries by just clicking on a button in the IDL’s
homepage (look back at Fig. 8). This causes a regis-
tration procedure to start, in which he/she can choose
the specific library to be queried and enter the personal
code identifying him/her in that library. In case he/she
is a new user (i.e., he/she is consulting that library for
the first time), a registration form is displayed, by which
he/she can obtain the previously mentioned code after
the insertion of his private data. Otherwise his/her per-
sonal data will be displayed. However, it is always pos-
sible to modify them.

When consulting a digital library, first of all, the user
must choose the class of documents to be queried, among
those included in the selected library. Then, he/she can
submit the query (Fig. 9), which can involve any com-
bination of attributes of the chosen class. For the sake
of convenience, he/she can recall directly one of the last
queries for each attribute, and decide the kind of ordering
according to which the query results are to be displayed.
They are presented in Fig. 10, and for each of them the
user can also obtain the visualization of an HTML page

Fig. 9. Query submission

(Fig. 11) representing the document itself. When the end-
user is presented with the results of his/her query, he/she
can find a VIEW button together with each retrieved
document. This way he/she can get that document dis-
played on a window frame. One could easily notice that it
is not a bitmap of the document, indeed it is an HTML
page, generated on-the-fly by HGENE , the application
enabler in charge of converting the internal format of the
document into the HyperText Markup Language.

In the next section, it will be illustrated how the IDL
logs the end users’ sessions and in which way it exploits
such a collected information in order to adapt the inter-
face to the features that affect the interaction and to the
needs of the end users.

6 Interface adaptivity

The aim of designing adaptive user interfaces is that of
having a number of different solutions to match the va-
riety and changeability of users, environments and tasks.
In IDL a simple adaptive system has been implemented
in order to produce a change in the output in response
to a limited number of situations and user behavioral
models.

A first level of adaptivity enables tailoring the in-
terface, after a sufficient number of interactions, to the
characteristics of the interaction of a specific user. A sec-
ond level of adaptivity allows the system to autonomously
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Fig. 10. Display of the query results

choose the kind of interface to present to the final user,
once the class the user belongs to has been identified.

The rules which constitute the user classification
patterns are inferred by the Learning Server from pre-
classified examples of user interactions, as explained in
Sect. 3.2.

As we pointed out above, each user of the IDL is pro-
vided with a personal identification code, represented by
a number automatically generated sequentially by the
system each time a new user connects to it. When a new
user connects to the IDL, a registration form is presented
in order to record his/her personal data. From then on,
he/she will enter the system by just typing his/her own
personal code.

Once the user has been identified (either as a new
or as an already existing one), his/her behavior must be
recorded in order to create/update the database about
his/her queries, which will be used to set the default to
the most frequently asked ones. It is important to note
that such a database is influenced only by successful op-
erations, since it would be nonsense to record operations
which are impossible to carry out. Moreover, the infor-
mation about a particular user is stored, but not used to
modify the system default, until the user has made a cer-
tain number of interactions: only then will the data previ-
ously collected be processed. In the first interactions, on
the contrary, the queried class and the ordering attribute
will be set to the first available ones, and no value will be
specified for the single attributes.

Fig. 11. Display of a retrieved document in HTML format

The information about each user is stored in a cor-
responding log file, that is updated after every success-
ful query with the corresponding data. This operation is
transparent to the user, which prevents him/her feeling
“observed” by the system. For each performed query, this
file reports the queried class of documents, the attribute
chosen for ordering the query results, and a list of groups,
each reporting the name of a document satisfying the
query and the text of the query for each attribute, along
with the information on the fact that it was validated
(i.e., filled with a value by the user) or not (i.e., left empty
by the user to indicate that its value was unimportant).

But just adding data to these files at every interaction
would soon make them too large to be handled and ana-
lyzed. In order to limit the size of the stored data, without
losing accuracy for the analysis, a file containing statistics
about all the past interactions is used, whereas the log file
is organized as a FIFO structure, remembering only the
last queries at any moment. This is in agreement with the
idea that the most recent queries better reflect the current
needs of the user, while still taking into account the past
ones by means of the previously computed statistics.

As soon as a user has reached the required number
of successful interactions for the system adaptation to
start, a new file is generated for him/her, containing some
statistics. In particular, for each document class in the
queried library, the related frequency in the last queries
(updated at each new interaction) is reported, followed by
the related attributes, each with the corresponding fre-
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Fig. 12. Frequent query menus

quency as an ordering attribute and with the list of all the
related query texts.

System adaptivity is obtained as follows: the default
class to be queried is set to that with the higher frequency
in the statistics file, and the ordering attribute is set to
that with the higher frequency among those associated
to that class. As to the query values for the various at-
tributes, each field in the query form is followed by a list,
initially empty (before starting the adaptation), contain-
ing all the past values queried for that attribute. The user
can either specify a new value (which will have prece-
dence over that chosen in the list), or choose one (or more)
values in the list, so avoiding retyping them and allow-
ing their composition with the AND/OR logic operators
(Fig. 12).

Of course, none of the default choices made by the sys-
tem forces the user to accept it, but he/she can change
everything he/she wants.

In the IDL each new user is asked to fill in a form with
personal data, and afterwards he/she receives an identity
code - User ID - to be used whenever he/she enters the
IDL again. Respectively, on the server side, the IDL Ap-
plication Server associates each User ID with a log file,
saving all the interactions of that user with the IDL.

Data concerning interactions are used to classify
the user. User classification allows the system to au-
tonomously choose the type of user interface that is pre-
sented to that kind of user. Currently, the adaptive envi-

ronment of IDL implements three distinct user interfaces,
namely a form-based interface, a topic-map based inter-
face, and a tree-based interface (Costabile et al. 1998).
The form-based interface is proposed to any member of
the class Novice, while Expert users are assigned with the
tree-based interface, and Teacher users have the form-
based interface as their default. Of course, the user is
allowed to switch to another interface at any time. When
a user connects for the first time to IDL he/she is assigned
to the default class, namely Novice.

After a user has been classified, the next problem to
face is how to follow potential switches of the class the
user belongs to, in case his/her behavior changes. It is
plausible to foresee a transitional user, intended as a user
becoming more and more skilled as he/she gets famil-
iar with IDL. Moreover, this problem needs the system’s
ability to register and identify the user.

7 Conclusions, related work and future directions

Machine learning, together with intelligent object-
centered techniques, can offer a valuable support when
building intelligent digital libraries. Indeed, all the tasks
related to information capture and semantic indexing can
take advantage of the use of intelligent techniques and
machine learning methods for layout analysis, document
classification and understanding, while the integration
of worldwide distributed digital libraries demands the
definition of a standard query language for information
retrieval. Moreover, machine learning techniques allow to
infer user models from user interactions and this turns out
to be useful to implement an adaptive interface. In the
paper, we have presented a prototype of an intelligent dig-
ital library service proposing solutions to both the above
issues.

It is hard to find work on adding machine learning
techniques to digital library applications. Conversely, it
is possible to find in the literature of information a num-
ber of methods and systems that exploit machine learning
techniques to infer user profiles.

Specifically, systems like Syskill & Webert (Pazzani
and Billsus 1997) learn and revise user profiles in order
to determine which WWW sites would be interesting to
a user. Such a task is driven by the specification of a topic
and heavily relies on a Bayesian classifier. Letizia (Lieber-
man 1995) is a system that monitors users’ behaviors
when they are browsing the WWW, and tries to infer
their interests. No explicit interaction with the user is
required. WebWatcher (Armstrong et al. 1995) also moni-
tors the users while browsing the WWW, so it can suggest
which links to follow in order to reach a specific site from
a starting one according to a specified goal. WebHound
(Lashkari 1995) is an interactive system that requires
each user to list the pages he/she is interested in, along
with ratings for them. Then, the system autonomously
detects other users that gave similar ratings and suggests
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new pages to the user on the basis of the ratings by users
with similar interests.

Future work will concern the extension of the digital
library’s tools and services in order to deal with different
kinds of documents, such as topographic maps for ap-
plications like geographic information systems, and tech-
nical documents for applications that support project
development.
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