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Preface

An agent is anything that perceives the surrounding environment through its sensors and
performs actions upon it through its effectors. AI research aims to describe and build
rational agents, which try to optimise their performance, given the information perceived
from the environment and their background knowledge. Computer vision and machine
learning investigate two important capabilities of rational agents: Human-like perception
of the sensed data and improvement of agent performance with time. In recent years,
there has been an increased interest in the synergetic contribution of these two fields to
the development of agents that can solve “real-world” problems. This workshop is
multidisciplinary in that it provides a forum for discussing current research in AI and
pattern recognition that pertains to machine learning in computer vision systems.

From the standpoint of computer vision systems, machine learning can offer effective
methods for automating the acquisition of visual models, adapting task parameters and
representation, transforming signals to symbols, building trainable image processing
systems, focusing attention on target object. To develop successful applications, however,
we need to address the following issues:

• How is machine learning used in current computer vision systems?
• What are the models of a computer vision system that might be learned rather than

hand-crafted by the designer?
• What machine learning paradigms and strategies are appropriate to the computer

vision domain?
• How do we represent visual information?
• How does machine learning help to transfer the experience gained in creating a vision

system in one application domain to a vision system for another domain?

From the standpoint of machine learning systems, computer vision can present interesting
and challenging problems. Many studies in machine learning assume that a careful trainer
provides internal representations of the observed environment, thus paying little attention
to the problems of perception. Unfortunately, this assumption leads to the development of
brittle systems with noisy, excessively detailed or quite coarse descriptions of the
perceived environment. Some specific machine learning research issues raised in the
computer vision domain are:

• How can noisy observations be dealt with?
• How can large sets of images with no annotation be used for learning?
• How can mutual dependency of visual concepts be dealt with?
• What are the criteria for evaluating the quality of learning processes in computer

vision systems?
• When should a computer vision system start/stop the learning process and/or revise

acquired models?
• When is it useful to adopt several representations of the perceived environment with

different levels of abstraction?

This workshop provides some answers to some of these questions, and maintains a
balance between theoretical issues and descriptions of implemented systems to promote
synergy between theory and practice. It follows the tradition of similar events organized
in the past decade, such as: NSF/ARPA Workshop on “Machine Vision and Learning”,
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Harpers Ferry, West Virginia (October 1992); AAAI Symposium on “Machine Learning
in Computer Vision: What, Why, and How?”, Raleigh, North Carolina (October 1993);
International Workshop on “Learning in Computer Vision”, Sydney, New South Wales,
Australia (April, 1996);  ECCV (European Conference on Computer Vision) Workshop
on “Learning in Computer Vision”, Freiburg, Germany (June 1998), ICML (International
Conference on Machine Learning) Workshop on “Machine Learning in Computer
Vision”, Bled, Slovenia (June 1999); First International Workshop on “Machine Learning
and Data Mining in Pattern Recognition”, Leipzig, Germany (September 1999).

We wish to thank the members of the Program Committee for their assistance in setting
up this workshop and in reviewing submitted papers. We wish also to thank the ECAI
2000 Programme Committee and in particular the Workshop Chair, Prof. Marie-Odile
Cordier, for supporting the organisation of this workshop and the European Network of
Excellence in Machine Learning (MLNET) for the economical support. Finally, we wish
to thank authors and invited speakers for their excellent contributions in promoting
discussion and the development of new ideas and methods on the workshop topics.

Floriana Esposito and Donato Malerba
August, 2000
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A Factorisation Framework for Structural Pattern Matching

Edwin Hancock

Department of Computer Science,
University of York,

York, Y01 5DD, UK
erh@cs.york.ac.uk

Abstract

Relational representations are of critical importance in high-level vision.
They can be used to represent the arrangement of image primitives in a
manner which captures the structure of both objects and scenes. Moreover,
they can convey important semantic information which is not captured by
using object attributes alone. In this talk we describe some important steps in
the direction of learning relational descriptions for high-level vision.

The talk commences by showing how the EM algorithm can be used to
compute a measure of relational similarity between pairs of graphs. Next, we
show how the statistical measure of relational similarity, which results from
this analysis, can be cast into a matrix setting. This opens the possibility for
performing a number of important operations on relational graphs using
matrix factorisation methods, such as singular value decomposition and
eigendecomposition. First, we show how to find correspondence matches
between graphs of different size, i.e. subgraph isomorphisms, using singular
value decomposition. Next, we suggest how to use the new matrix
representation to learn structural representations. Finally, we show how the
framework can be used to edit the structure of graphs so as to remove
relational errors using an eigenclustering method.

We demonstrate the new framework on a number of problems from high-
level vision, including model alignment, content-based image retrieval and
perceptual grouping. This work can be viewed as combining ideas from
statistical and structural pattern recognition, and from spectral graph theory.





An Abstraction Model of Visual Perception 
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Abstract 

 
The talk presents a computational model of abstraction, based on 

perceptual principles, well suited to describe and handle visual and spatial 
concepts and data. The model spans two dimensions: one concerns the type 
of representation and processing applied to visual input, starting from the 
signal and ending with an abstract theory; the onter one concerns the 
selection of a suitable level of detail for representing the spatial concepts 
when a specific goal has to be reached. In order to concretely implement the 
transformation between different levels, a number of abstraction operators 
are defined. The semantics of the operators, as well as conditions for 
applicability, will be analyzed.  

The model will be shown to encompass and to give a precise basis to 
previous attempts, in vision, to describe changes of representation, as well as 
to visual perceptual findings from cognitive sciences. A practical application 
to cartographic generalization in GIS will also be described. 
 





Feature-Based Shape Recognition by Support Vector
Machines

Edoardo Ardizzone1, Antonio Chella2, and Roberto Pirrone3

Abstract. A model identification technique for the objects in a gray-
level image is proposed, based on the extraction of a compact shape
feature in terms of the statistical variance pattern of the objects’ sur-
face normals.

A shape recognition system has been developed, that detects auto-
matically image ROIs containing single objects, and classifies them
as belonging to a particular class of shapes.

We use the eigenvalues of the covariance matrix computed from the
pixel rows of a single ROI. These quantities are arranged in a vector
form, and are classified using Support Vector Machines (SVMs). The
selected feature allows us to recognize shapes in a robust fashion,
despite rotations or scaling, and, to some extent, independently from
the light conditions.

Theoretical foundations of the approach are presented, together
with an outline of the system, and preliminary experimental results.

1 INTRODUCTION

Object recognition is one of the main goals of a computer vision
system. Particular attention has been paid, during the last years, to the
recognition of 3D objects in real scenes, and the several applications
have been prposed in autonomous robotics.

Identification and location are the two basic steps in whatever
model-based object recognition approach [2, 4, 14]. We present an
identification technique developed as a part of a 3D vision system
aimed to the recognition of objects in semi-structured environments.
Currently the identification system is being tested as a scene descrip-
tion module within a content-based image retrieval application.

The proposed architecture is arranged as follows. The image is
automatically scanned to locate ROIs containing single objects. The
objects’ shape is described in terms of the eigenvalues of the covari-
ance matrix computed from the pixel rows of the ROI: the eigenvalues
are arranged as a vector. We use a pool of suitably designed Support
Vector Machines [11, 15] to classify different shape classes such as
cubes, spheres, cones, pyramids, cylinders. The system provides a
simple description of the shapes present inside the image, together
with their 2D displacement.

The use of this technique is based on several considerations. First, a
theoretical analysis proves that, under the assumption of Lambertian
surface, the eigenvalues vector is directly related to the change of
surface normals of objects under investigation. Experimental evidence
shows that the selected feature performs as "almost invariant" with

1 DIAI - University of Palermo and CERE - National Research Council Viale
delle Scienze 90128, Palermo, Italy, email: ardizzon@unipa.it

2 DIAI - University of Palermo and CERE - National Research Council Viale
delle Scienze 90128, Palermo, Italy, email: chella@unipa.it

3 DIAI - University of Palermo and CERE - National Research Council Viale
delle Scienze 90128, Palermo, Italy, email: pirrone@unipa.it

respect to illumination conditions and changes in the object’s attitude.
Consequently, similar shapes form clusters in the feature space, and
learning techniques are needed to perform classifications.

The eigenvalues vector is a compact and efficient way to describe
the statistical variance pattern of the shape profile, due to the complete
de-correlation performed on the input patterns by the KL transform [5]
which is strictly related to the Principal Component Analysis [6]. We
perform a KL analysis on the grey-level images of the objects as in
the classical appearance based approaches [8]. Our eigenvalues vector
acts as a characterization of the whole object shape, and allows us to
avoid storing large amounts of image data to describe several views
of a particular model.

The last consideration is that the implicit application of KLT to the
ROI pixel rows provides zero mean transformed vectors. In this way,
comparisons between the eigenvalue vectors of two different ROIs
are meaningful because they’re insensible to bias effects in the pixel
values.

We performed our experiments on real scenes made by colored
wooden blocks of various shapes, placed on a table and viewed by
a CCD camera. Lighting conditions were the normal diffuse ones
of our laboratory. Even some artificial images produced by a solid
modeler, with a single directional light source were used to make the
training set for SVMs as general as possible. Despite the particular
experimental setup, the approach we developed is a general one, and
we have used it even in the analysis of real generic scenes.

The paper is arranged as follows. In section 2 theoretical issues on
the eigenvalues vector will be addressed. Section 3 will explain in
detail the entire system performance, while the experimental results
will be reported in section 4. Finally, conclusions will be drawn in
section 5.

2 THEORETICAL REMARKS

The use of KLT features for pattern recognition is a useful technique
in the computer vision community [9, 13] but, in general, it is applied
to the image as a whole, and the transformed vectors are used for the
classification task.

In our approach, KLT is applied to the scan-lines of a generic sub-
image, and only the eigenvalues of their covariance matrix are taken
into account. Formally, given aN×M rectangular region of an image,
we compute the matrix:

Cr = E{(rk − rm)(rk − rm)T } =
1
N

N∑
i=1

rkrk
T − rmrmT ,



where

rm =
1
N

N∑
i=1

rk.

In the previous equationrk is the generic pixel row vector of the ROI
under investigation, considered in column form. Then, we compute
the vector:

λ = diag(Cq) (1)

HereCq = ACrAT , is the covariance matrix of the KL transformed
vectorsqk, whileA is the transformation matrix whose rows are the
eigenvectors ofCr.

The matrixCq is diagonal, so KLT performs total decorrelation
of the input vectors. Moreover, the mean value of the transformed
vectors is always zero. These properties will be used to reinforce our
conclusions about the choice ofλ as a global shape descriptor.

The first step towards the justification of the usability ofλ, is the
proof of the relation betweenλ and the actual shape of the object
depicted in the selected ROI. We’ll consider a weak perspective cam-
era model and the Lambert law to model the light reflection process
upon the object surface. These constraints are not so restrictive, and
are widely used to model perceptive processes. In particular, weak
perspective is introduced for simplicity, while the Lambertian surface
constraint holds for most real objects.

If an object is imaged by a camera under the weak perspective
assumption, each pointpo = (x, y, z) of the object, expressed in the
camera coordinate system, is mapped onto an image pointp = (u, v)
wherep = WPpo is the perspective transformation. According to
the Lambert law the image irradianceE in each point is equal to the
image intensity value in the same point, and is expressed by:

I(i, j) = E(p) = HρlT n(po)

In the previous equationH is a constant value related to the lens
model,ρ is the albedo of the object surface,l is the illuminant (con-
stant) vector andn(po) is the surface normal at the pointpo. The
first equality takes into account the coordinate change from the image
center to the upper-left corner, which is a linear transformation.

When we consider a vertical slice of the image, then each pixel row
vector is defined as:

rk = {I(k, j) : j = 0, . . . , M − 1}T , k = 0, . . . , N − 1 (2)

Here the transpose symbol is used to definerk as a column vector.
Substituting the expression of the generic pixel valueI(i, j) in equa-
tion 2 we obtain:

rk = Hρ{lT nkj : j = 0, . . . , M − 1}T , k = 0, . . . , N − 1 (3)

In equation 3nkj refers to the surface normal vector that is projected
onto position(k, j) in the image plane.

Now, we derive the expression for the generic elementCr(i, j) of
the pixel rows covariance matrix, using the equation stated above:

Cr(i, j) =
1
N

∑
k

rkirkj − 1
N2

∑
k

rki

∑
k

rkj (4)

Substituting equation 3 in equation 4 we obtain:

Cr(i, j) = Hρ
N

∑
k
(lT nki)(lT nkj)−

Hρ
N2

(∑
k
lT nki

) (∑
k
lT nkj

) (5)

We rewrite equation 5:

Cr(i, j) = HρlT
[

1
N

∑
k
nkinT

kj−
1

N2

(∑
k
nki

) (∑
k
nkj

)T
]
l

(6)

Finally, equation 6 is rewritten in two different forms for diagonal and
off-diagonal terms:

Cr(i, j) =

{
HρlT C(i)

n l , i = j

HρlT
(
K(ij)

n − n(i)
m n(j)

m

T
)

l , i 6= j
(7)

The last equation states that diagonal terms of the pixel rows covari-
ance matrix can be computed directly from the covariance matrices
C(i)

n of the object surface normals projecting themselves onto a single
slice column. The off-diagonal terms of the same matrix are computed
from the difference between the correlation matrixK(ij)

n of the nor-
mals related to two different columns minus the term obtained from
the product of their mean vectors.

From the previous result we argue that the matrixCr is well suited
to express the statistical variance pattern of the object surface shape
along both rows (off-diagonal terms) and columns (diagonal terms)
despite it is not referred to the entire slice, but it’s computed starting
from its rows. We achieve a considerable reduction of computational
time, without losing the expressiveness of the selected feature, be-
cause we compute onlyM eigenvalues, while the application of the
KLT to the entire region involves the computation ofN × M coeffi-
cients.

The use of the eigenvalues allows us to transform our feature in a
compact way. Theλ vector still expresses the rows variance pattern
because it results from the covariance matrix (equation 1) of the KL
transformed pixel rows that are completely uncorrelated.

Moreover, theλ vector allows performing comparisons between
different regions in the same image or from different ones in order
to search for similar shapes. In general, two different sets of rows
cannot be directly compared, due to the presence of bias effects in the
pixel values deriving from noise and/or local lighting conditions. The
implicit application of KLT deriving from the use ofλ implies that if
we compare two different regions we refer to their transformed rows
which have zero mean value: these are correctly compared because
they’ve the same mean value and no bias effect is present.

3 DESCRIPTION OF THE SYSTEM

We performed our experiments on real scenes made by colored
wooden blocks of various shapes, placed on a table and viewed by a
CCD camera. Lighting conditions were the normal diffuse ones of our
laboratory. Even some artificial images produced by a solid modeler,
with a single directional light source were used to make the training
set for SVMs as general as possible. Despite the particular experi-
mental setup, the approach we developed is a general one, and we
have used it even in the analysis of real generic scenes (see figure 5).

We’ve analyzed the histogram of the components ofλ computed
from several images both synthetic and real, depicting single shapes
under varying attitudes and lighting (see figure 1). This histogram
performs as an "almost invariant" under varying illuminant conditions
and attitude of the object.

The histogram exhibits some dominant modes, whose relative posi-
tion and amplitude depend on the shape observed. The amplitude and
position of these histogram modes remain almost unchanged under
rotation, translation, and scaling of the object. The light direction acts
as a scaling factor for all the terms ofCr (equation 7) thus affecting
in a uniform manner all the components ofλ. We have experimental
evidence that in our setup varyingl doesn’t affect the histogram too
much.

The almost invariant behavior of theλ vector implies that similar
shapes tend to form clusters in the feature space. Shape models are de-



Figure 1. Shape examples together with the relativeλ histogram. Selected
ROIs are256 × 100 wide. Comparing the couples along each row, it can be

noted that changes in attitude and lighting don’t affect the histogram too
much.

fined in terms of these clusters, and an unknown object is recognized
in terms of the closest cluster. According to these experimental evi-
dence, a learning machine trained on the model clusters, is a suitable
approach to perform recognition.

We’ve set up a classifier based on the use of a pool of suitably tuned
SVMs that operate in the eigenvalues space.Moreover, a search algo-
rithm for the automatic analysis of the test images has been derived,
which is based on the maximization of correlation between the actual
λ vector and some sample vectors from the different shape classes.

The complete system acts in the following way: first, the image is
scanned from left to right and from top to bottom by moving win-
dows of fixed size in order to locate some possible regions of interest.
Then, the height of each window is resized to enclose at most a single
complete object. Finally, all the selected regions are classified by the
SVMs pool.

3.1 Automatic search algorithm

The search algorithm we implemented is based on a two-pass strategy.
The first step performs a rough location of the ROIs for the horizon-
tal and vertical displacement. The second step defines the windows’
dimensions for all the selected positions.

The search criterion is the correlation maximization between theλ
vector of a fixed size slice and a sample of each shape class computed
as the mean vector between those used as training set for the various
SVMs. The correlation values with all the class samples are computed
by scanning the image from left to right with a256 × 100 fixed slice,
and the maximum is considered time by time. This information is
used only to detect if there’s something without looking at a particular
shape. Positive peaks of the correlation defined above vs. the position
of the left side of the slice, indicate a region of interest.

Relevant positions are selected as follows. The cumulative function
of the correlation is computed, and the selected points are the zero
crossings of its second order derivative: these are the slope inversion
points of the cumulative function, that in turn correspond approxi-
mately to the correlation maxima (see figure 2). We found convenient
to use the cumulative function in order to avoid noisy spikes that
can be present near a peak when detecting maxima directly from the
correlation plot.

For each selected ROI, single objects are detected using a20 ×
100 fixed slice that moves from top to bottom. Again the correlation
maxima are computed with the previous strategy.

In the second step of the algorithm, we use the variance maxi-
mization as guiding criterion to resize windows’ height in order to
enclose a single complete object. Here the variance is approximated
as the maximum eigenvalue in theλ vector of the current slice. Start-
ing from the position of each correlation peak, windows are enlarged
along their height by a single row at a time, and theλ vector is com-
puted, taking into account its maximum component. Positive peaks
correspond approximately to the upper and lower edge of the object.
Again we use the second order derivative of the cumulative function
in order to avoid mismatches due to the presence of variance spikes
near the actual maximum. Search results are depicted in figure 3.

3.2 Shape classification using SVM

We adopted SVMs as learning strategy. The analytical approach to
the classification performed by SVMs ensures us that correct sepa-
rating hyperplane between classes will be computed. In general, this
approach has to cope with two problems: the more or less precise lo-
cation of the separating hyperplane depends on the number of support



Figure 2. Example of correlation maximization search. In the topmost row
there is a sample with the slices corresponding to the correlation maxima, the
cumulative function plot, and its second order derivative. Maxima have been
found in position21, 39, 105 and128. In the lower row there are the vertical
sub-slices of the ROI in position105 along with the cumulative function and

its second order derivative.

vectors that is related to the number of training examples. SVMs are,
in general, computationally expensive because they involve a function
maximization. Nevertheless, SVMs represent a good development en-
vironment for tuning the classification strategy.

In our implementation, SVMs performed very well in terms of
computational time: in average, less than 10 seconds on a Pentium
II processor are sufficient in order to train a machine to discriminate
between a singular shape class and all the others.

The SVM in its original formulation is designed for two-class dis-
crimination, so we used a particular training strategy, in order to cope
with our multi-class task. Two different kinds of SVMs have been
trained on six shape classes: cube, cylinder, pyramid, cone, ellipsoid,
and box. First, six SVMs have been trained in aone-versus-others
fashion, each of them being able to discriminate between a particu-
lar class and all other objects. Besides, a second pool of 15 SVMs
have been trained using apair-wisestrategy: each SVM is trained to
discriminate between a single pair of the desired classes, so forK
classes we needK(K − 1)/2 different machines.

The use of two learning strategies is related to the need to avoid
mismatches in classification. Many researchers [7, 10, 12] studied

Figure 3. Example of variance maximization search. On the left, final
slices of the picture in figure 2 are depicted along with the plot of variance,

and its second order derivative for the slice in position105.

the problem of the optimum placing of borderlines between classes.
A one-versus-otherstraining leaves some uncertainty regions in the
feature spaces where we’re not able to decide correctly to which class
belongs the actual sample. A way to provide a refinement of the bound-
ary locations between multiple classes is the use of apair-wiselearn-
ing strategy.

In our experiments the use ofone-versus-othersor pair-wisestrat-
egy alone is not sufficient to obtain a correct classification. So, in
the test phase, we use the first set of machines in order to provide a
rough discrimination, which is then refined by the use of the second
ones. Theone-versus-othersmachines provide their own estimate in a
winner-takes-allfashion: the distances between the object’sλ vector
and the optimal hyperplanes defining each shape class are computed,
and the class with the highest positive distance is taken as the winner.
In this way the class where the actual sample vector is more "inside"
is selected.

In some cases this approach doesn’t allow a very sharp classifi-
cation, and the sample vector results inside two or more classes. In
this case, thepair-wisemachines are used in order to provide a dis-
ambiguation. The result of testing the vector with each machine is
accumulated for each class in a sort of round-robin challenge. The
class with the highest score wins the tournament, and the sample
vector is classified according to this outcome.

4 EXPERIMENTAL SETUP

To set up the classifier, a training set has been used, which consists of
118 real and synthetic images representing single objects belonging to
all six classes. These images have been taken under varying lighting
conditions, and they represent both real and synthetic shapes with
different orientation and scaling.

The same training set has been used to train bothone-versus-others
andpair-wiseSVMs in order to allow the second ones to act as a
refinement of the boundaries between the various classes with respect
to the first set of machines.

A 3×3median filter is used to reduce noise and undesired mismatch
due to artifacts in the background. Moreover, all the input images are
normalized with respect to the quantity

∑
i,j

I(i, j)2 that is a measure
of the global energy content of the image. In this way we obtain that



the λ vector components range almost in the same interval for all
images.

In the test phase, each ROI is tested against thewinner-takes-all
machines, and only when the recognition percentage score is below
60% we use thepair-wisemachines. The above threshold has been
selected on the basis of the experimental evidence.

Experiments have been carried on both images depicting single ob-
jects, and complex scenes with many objects even partially occluded.
Experiments have been performed on images depicting real scenes as
in figure 5. Tables 1, 2 and 3, and figures 4 and 5 illustrate the very
good results of experiments.

Table 1. Performance of the system on the scene depicted in figure 3. The
position values are referred to the upper left corner of each slice. In slice two
the PW classification is incorrect, but it’s not used to the high score obtained
in WTA mode. PW refines the outcome of the WTA only in the last case: in

fact the PW outcome is near the lower threshold.
Slice n. Pos. WTA (%) PW

0 (21, 91) box (87.03) cube
1 (39, 74) box (100) box
2 (105, 70) cylinder (89.52) box
3 (105, 152) box (68.67) cube

Figure 4. The performance of the system on a multiple objects image.
From top to bottom: the image with the selected slices, and a table reporting

the output of the system.

Table 2. Performance of the system on the scene depicted in figure 4. It can
be noted that for the first slice we obtain a weak correct response from the

WTA machines, while the PW classification is almost wrong due to the
closeness between the two shape classes. Many others slices, detected by the

search algorithm, have been discarded by the classifier.

Slice n. Pos. WTA (%) PW
0 (52, 40) box (48.76) cube
1 (71, 132) box (69.87) cube
2 (141, 46) cylinder (100) cylinder

5 CONCLUSIONS AND FUTURE WORK

The presented work is a first step towards a robust object recognition
system, that is suitable both as an identification stage of a 3D vision
system, and as a content description module for content-based image
retrieval applications. Early results are satisfactory and provide us
with many cues about future developments in complex scenes.

Figure 5. The performance of the system on a real image, depicting the
city of Venice. Here, the slices have been selected interactively.

Table 3. Performance of the system on the scene depicted in figure 5. Slice
1 is misclassified as a cone due to the strong similarity between one side of
the actual pyramid and the background. Slice 3 is correctly classified by the

WTA machine, and the PW response is not taken into account.

Slice n. Pos. WTA (%) PW
0 (1, 40) box (100) box
1 (15, 1) cone (57.10) cube
2 (118, 190) box (57.49) box
3 (118, 230) box (89.48) box/cylinder

The use of a statistical approach makes the system quite robust with
respect to noise, but the system fails in presence of textures. One might
think to specialize the system to the recognition of textures as a global
feature, while shape could be argued using some other approach.
Another interesting extension is the integration of our approach with a
database of different views of each shape, to provide disambiguation
in situations like the second slice in figure 5.

We are investigating in more detail the influence of the illuminant
direction. Our approach has proven itself robust with respect to this
parameter due to the fact thatl affects all the elements of the covari-
ance matrix in the same way.

An open field of investigation is the correct segmentation of the
scene to provide useful data to the location module of the vision sys-
tem. Our approach performs a sort of rough region location, even
in presence of partially occluded objects (see figure 4). This can be
a suitable starting point for a detailed segmentation which could be
performed by the reconstruction module. In our 3D vision system an
a priori color based 2D segmentation of the scene is implemented,
which provides the identification module with suitable regions of in-
terest [1].

Finally, we are investigating the use of the SVMs in order to derive
model parameters for unknown objects by interpolation from those
used to describe the training samples. In the current implementation
of our vision system we model shapes by means of superquadrics [3].
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Learning Actions: Induction over Spatio-Temporal
Relational Structures - CRGST

Walter F. Bischof and Terry Caelli 1

Abstract. We introduce a rule-based approach for learning and
recognition of complex actions in terms of spatio-temporal attributes
of primitive event sequences. During learning, spatio-temporal deci-
sion trees are generated that satisfy relational constraints of the train-
ing data. The resulting rules, in form of Horn clause descriptions, are
used to classify new dynamic pattern fragments, and general heuristic
rules are used to combine classification evidences of different pattern
fragments.

1 Introduction

Most current techniques for the encoding and recognition of actions
use numerical machine learning models which are not relational in
so far as they typically induce rules over numerical attributes which
are not indexed or linked via an underlying data structure (e.g. a rela-
tional structure description or a directed acyclic graph, DAG). There-
fore most learning models assume that the correspondence between
candidate and model features is knownbeforerule generation (learn-
ing) or rule evaluation (matching) occurs. This assumption is dan-
gerous when large models or test data are involved, as is the case in
complex actions involving, for example, the tracking of multiple limb
segments of human operators. On the other hand well known sym-
bolic relational learners like Inductive Logic Programming (ILP) are
not designed to apply efficiently to numerical data. So, although they
are suited to induction over relational structures (e.g. Horn clauses),
they typically generalize or specialize over the symbolic variables
and not so much over numerical attributes. More specifically, it is
very rare that symbolic representationexplicitly constrains the types
of permissible numerical learning or generalizations obtained from
training data.

Over the past six years we have explored methods for combin-
ing the strengths of both sources of model structures [1, 2, 3] by
combining the expressiveness of ILP with the generalization mod-
els of numerical machine learning to produce a class of numerical
relational learning which induce over numerical attributes in ways
which are constrained by relational pattern or shape models. Our
approach, Conditional Rule Generation (CRG), generates rules that
consist of attributed linked lists of pattern (shape) features which,
together, completely cover the training data but the generated rules
are ordered with respect to their discriminatory power with respect
to both attributes and features (see Figure 1).

Since CRG induces over a relational structure it requires gen-
eral model assumptions, the most important being that the models
(shapes) are defined by a labeled graph where relational attributes

1 Department of Computing Science, University of Alberta, Edmonton, T6G
2H1, Canada, Email: (wfb,tcaelli)@ualberta.ca
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Figure 1. Example of input data and conditional cluster tree generated by
CRG method. The left panel shows segmented input data with a sketch of

the relational structure descriptions generated for these data. The right panel
shows a cluster tree generated for the data on the left. Classification rules of

the formUi �Bij � Uj : : : are derived directly from this tree [6].

are defined only with respect to neighboring vertices. Such assump-
tions constrain the types of unary and binary features which can be
used to resolve uncertainties (Figure 1).

In this paper, we describe CRGST, a spatio-temporal extension of
CRG for learning dynamic patterns and its application to animated
scenes. We discuss representational issues, rule generation models
and rule application. The inclusion of time makes modeling and algo-
rithmic issues more challenging and requires the addition of further
assumptions to make the problem tractable.

2 Conditional Rule Generation

In Conditional Rule Generation [1], classification rules for patterns
or pattern fragments are generated that include structural pattern in-
formation to the extent that is required for classifying correctly a
set of training patterns. CRG analyzes unary and binary features of
connected pattern components and creates a tree of hierarchically or-
ganized rules for classifying new patterns. Generation of a rule tree
proceeds in the following manner (see Figure 1).

First, the unary features of all parts of all patterns are collected into
a unary feature spaceU in which each point represents a single pat-
tern part. The feature spaceU is partitioned into a number of clusters
Ui. Some of these clusters may be unique with respect to class mem-



bership and provide a classification rule: If a pattern contains a part
pr whose unary features~u(pr) satisfy the bounds of a unique clus-
ter Ui then the pattern can be assigned a unique classification. The
non-unique clusters contain parts from multiple pattern classes and
have to be analyzed further. For every part of a non-unique cluster we
collect the binary features of this part with all adjacent parts in the
pattern to form a (conditional) binary feature spaceUBi. The binary
feature space is clustered into a number of clustersUBij . Again,
some clusters may be unique and provide a classification rule: If a
pattern contains a partpr whose unary features satisfy the bounds
of clusterUi, and there is an other partps, such that the binary fea-
tures~b(pr; ps) of the pairhpr; psi satisfy the bounds of a unique
clusterUBij then the pattern can be assigned a unique classification.
For non-unique clusters, the unary features of the second partps are
used to construct another unary feature spaceUBU ij that is again
clustered to produce clustersUBU ijk. This expansion of the cluster
tree continues until all classification rules are resolved or a maximum
rule length has been reached.

If there remain unresolved rules at the end of the expansion pro-
cedure (which is normally the case), the generated rules are split
into more discriminating rules using an entropy-based splitting pro-
cedure where the elements of a cluster are split along a feature
dimension such that the normalized partition entropyHP (T ) =
(n1H(P1) + n2H(P2))=(n1 + n2) is minimized, whereH is en-
tropy. Rule splitting continues until all classification rules are unique
or some termination criterion has been reached. This results in a
tree of conditional feature spaces (Figure 1), and within each fea-
ture space, rules for cluster membership are developed in the form of
a decision tree. Hence, CRG generates a tree of decision trees.

CRG generates classification rules for pattern fragments in the
form of symbolic, possibly fuzzy Horn clauses. When the classifi-
cation rules are applied to some new pattern one obtains one or more
(classification) evidence vectors for each pattern fragment, and the
evidence vectors have to be combined into a single evidence vector
for the whole pattern. The combination rules can be learned [12],
they can be knowledge-guided [7], or they can be based on general
compatibility heuristics [2]. In the latter approach, sets of instantiated
classification rules are analyzed with respect to their compatibilities
and rule instantiations that lead to incompatible interpretations are
removed. This is particularly important in scenes composed of mul-
tiple patterns where it is unclear whether a chainpi � pj � : : :� pn
of pattern parts belongs to the same pattern or whether it is “cross-
ing the boundary” between different patterns. Through application
of these compatibility heuristics, we solve two problems at the same
time, namely classification of pattern parts and segmentation of dif-
ferent patterns, eliminating the requirement of having to group the
image into regions corresponding to single objects before the image
regions have been classified.

3 CRGST

We now turn to CRGST, a generalization of CRG from a purely spa-
tial domain into a spatio-temporal domain. Here, data consist typ-
ically of time-indexed pattern descriptions, where pattern parts are
described by unary features, spatial part relations by (spatial) bi-
nary features, and changes of pattern parts by (temporal) binary fea-
tures. In the following sections, we discuss representational issues,
rule generation models, learning paradigms and applications of the
CRGST approach. In contrast to more popular temporal learners like
hidden Markov models [11] and recurrent neural networks [4], the
rules generated from CRGST are not limited to first-order time dif-

ferences but can utilize more distant (lagged) temporal relations as a
function of the data model and uncertainty resolution strategies. At
the same time, CRGST allows for the generation of non-stationary
rules, unlike stationary models like multivariate time series which
also accommodate correlations beyond first-order time differences
but do not allow for the use of different rules at different time peri-
ods.

3.1 Representation of Spatio-Temporal Patterns

A spatio-temporal pattern is defined by a set of labeled time-indexed
attributed features. A patternPi is thus defined in terms ofPi =
fpi1(~a : ti1); : : : ; pin(~a : tin)g wherepij(~a : tij) corresponds
to partj of patterni with attributes~a that are true at timej. The at-
tributes~a are defined with respect to specific labeled features, and are
restricted to arity 1 (unary, i.e. single feature attributes) or 2 (binary,
i.e. relational feature attributes), that is,~a = f~u;~bs;~btg (see Figure 2).
Examples of unary attributes~u include area, brightness, position;
spatial binary attributes~bs include distance, relative size, and tempo-
ral binary attributes~bt include changes in unary attributes over time,
such as size, orientation change, long range position change, etc. Our
data model and consequent rules are subject to spatial and temporal
adjacency (in the nearest neighbor sense) and temporal monotonic-
ity, i.e. features are only connected in space and time if they are spa-
tially or temporally adjacent and that the temporal indices for time
must be monotonically increasing (“predictive” model) or decreas-
ing (“causal” model). Although this limits the expressive power of
our representation, it is still more general than strict first-order dis-
crete time dynamical models such as, for example, hidden Markov
models or Kalman filters.
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Figure 2. Illustration of a spatio-temporal pattern consisting of three parts
over three time-points. Undirected arcs indicate spatial binary connections,

solid directed indicate temporal binary connections between the same part at
different time-points, and dashed directed arcs indicate temporal binary

connections between different parts at different time-points.



For CRGST an “interpretation” then involves determining the
smallest set of linked lists of attributed and labeled features, causally
indexed (i.e. the starting times must be monotonically indexed) over
time, which maximally index a given pattern, and it is defined by di-
rected paths within the directed acyclic graph (DAG) which covers
all examples and classes in the training set as,illustrated in Figure 2.

3.2 Rule Learning

CRGST generates classification rules for spatio-temporal patterns in-
volving a small number of pattern parts subject to the following con-
straints: 1) The pattern fragments involve only pattern parts that are
adjacent in space and time, 2) the pattern fragments involve only non-
cyclic chains of parts, 3) temporal links are followed in the forward
direction only to produce causal classification rules that can be used
in classification and in prediction mode.

Rule learning proceeds in the following way: First, the unary fea-
tures of all parts (of all patterns at all time points),~u(pit), i =
1; : : : ; n, t = 1; : : : ; T , are collected into a unary feature spaceU
in which each each point represents a single pattern part at any time
point t = 1; : : : ; T . From this unary feature space, cluster tree ex-
pansion can proceed in two directions, in the spatial domain and in
the temporal domain. In the spatial domain cluster tree generation
proceeds exactly as described in Section 2 following spatial binary
relations, etc. In the temporal domain, binary relations can be fol-
lowed only in strictly forward (predictive) or backward (causal) di-
rections, analyzing recursively temporal changes of either the same
part,~bt(pit; pit+1) (solid arrows in Figure 2), or of different pattern
parts,~bt(pit; pjt+1) (dashed arrows in Figure 2) at subsequent time-
points. This leads to a conditional cluster tree as shown in Figure 1,
except that the relational attribute spaces B can be either spatial or
temporal, in accordance with the usual Minimum Description Length
(MDL) criterion for Decision Trees[9].

CRGST produces classification rules of the formUi�Bij�Uj�
Bjk � : : : involving spatial and/or temporal binary relations. The
resultant Horn clause rules are of the form:

class( part(i at time j with attributes k) AND
part relations(ij at time j+n with attributes u) AND
part(l at time j+m: with attributes s) AND
: : :

These rules cover all training examples and define a path in the DAG
discussed above.

From the empirical class frequencies of all training patterns one
can derive an expected classification vector, or evidence vector~E as-
sociated with each rule. We can also compute evidence vectors for
partial rule instantiations, again from empirical class frequencies of
non-terminal cluster spaces. Hence, an evidence (classification) vec-
tor ~E is available for every partial or complete rule instantiation, as
discussed in the next section.

3.3 Rule Application

A set of classification rules is applied to a spatio-temporal pattern in
the following way. Starting from each pattern part (at any time point),
all possible sequences (chains) of parts are generated using parallel,
iterative deepening, subject to the constraints the only adjacent parts
are involved and no loops are generated. Note, again, that spatio-
temporal adjacency and temporal monotonicity constraints are used
for rule generation. Each chain is classified using the classification
rules. Expansion of each chainSi = < pi1; pi2; : : : ; pin > termi-
nates if one of the following conditions occurs: 1) the chain cannot

be expanded without creating a cycle, 2) all rules instantiated bySi
are completely resolved, or 3) the binary features~bs(pij ; pij+1) or
~bt(pij ; pij+1) do not satisfy the features bounds of any rule.

If a chainS cannot be expanded, the evidence vectors of all rules
instantiated byS are averaged to obtain the evidence vector~E(S) of
the chainS. Further, the setSp of all chains that start atp is used to
obtain an initial evidence vector for partp:

~E(p) =
1

#(Sp)

X
S2Sp

~E(S): (1)

where#(S) denotes the cardinality of the setS. Evidence combina-
tion based on (1) is adequate if it is known that a single pattern is to be
recognized. However, if the test pattern consists of multiple patterns
then this simple scheme can easily produce incorrect results because
some some part chains may not be contained completely within a sin-
gle pattern but “cross” spatio-temporal boundaries between patterns.
This occurs when actions corresponding to different types cross can
intersect in time and/or space. These chains are likely to be classi-
fied in a arbitrary way. To the extent that they can be detected and
eliminated, the part classification based on (1) can be improved.

We use general heuristics for detecting rule instantiations involv-
ing parts belonging to different patterns. They are based on mea-
suring the compatibility of part evidence vectors and chain evidence
vectors. More formally, the compatibility measure can be character-
ized as follows. For a chainSi =< pi1; pi2; :::; pin >,

~w(Si) =
1

n

nX
k=1

~E(pik) (2)

where~E(pik) refers to the evidence vector of partpik. Initially, this
can be found by averaging the evidence vectors of the chains which
begin with partpik. Then the compatibility measure is used for up-
dating the part evidence vectors using an iterative relaxation scheme
[8]:

~E(t+1)(p) = �

0
@ 1

Z

X
S2Sp

~w(t)(S)
 ~E(S)

1
A ; (3)

where � is the logistic function,Z a normalizing factorZ =P
S2Sp

w(t)(S), and the binary operator
 is defined as a

component-wise vector multiplication[a b]T 
 [c d]T = [ac bc]T .
The updated part evidence vectors then reflect the partitioning of the
test pattern into distinct subparts.

4 Example

The CRGST approach is illustrated in an example where three differ-
ent variations of grasp movements were learned: 1) where the hand
moved in a straight path to the object, 2) where an obstacle in the
direct path was avoided by moving over it, and 3) where the obstacle
was avoided by moving around it.

The movements were recorded using a Polhemus system [10] run-
ning at 120Hz for three sensors, one on the upper arm, one on the
forearm, and one on the hand (see Figure 3). Each movement type
was recorded five times. From the position data(x(t); y(t); z(t)) of
these sensors, 3-D velocityv(t), accelerationa(t), curvaturek(t),
and torsion�(t)were extracted. Sample time-plots of these measure-
ments are shown in Figure 4.

For these data, the definition of the spatio-temporal patterns is
straightforward. At every time point, the patterns consist of three



Figure 3. Grasping movement around an obstacle. The movement sensors
were placed on the upper arm, the forearm, and the hand.
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Figure 4. Sample timeplots of the movement sequences illustrated in
Figure 3. The left column shows traces for the upper arm, the middle column

for the forearm and the right column for the hand. The first row shows
time-plot for velocity (for a straight grasp movement), the second for

acceleration (for a grasp movement over an obstacle), and the third for
curvature (for a grasp movement around an obstacle). Each graph shows five
samples for each action type. All measurements have been normalized for

display purposes.

parts, one for each sensor, each part being described by unary at-
tributes ~u = [x; y; z; v; a; k; � ]. Binary attributes were defined
by simple differences, i.e. the spatial attributes were defined as
~bs(pit; pjt) = ~u(pit) � ~u(pjt), and the temporal attributes were
defined as~bt(pit; pjt+1) = ~u(pjt+1)� ~u(pit).

Performance of CRGST was tested with a leave-one-out paradigm,
i.e. in each run, movement classes were learned using all but one pat-
terns, and the resulting rule system was used to classify the remain-
ing pattern. Pattern learning and pattern classification proceeded ex-
actly as described in Sections 3.2 and 3.3. Results of these tests are
shown in Table 1 for different attribute combinations for unary, spa-
tial binary and temporal binary relations. The last column indicates
what percentage of pattern points was classified correctly on aver-
age. Although each test pattern consisted of a single movement, this
was not assumed by the classification algorithm in order to show the
basic classification performance. Using the ”single-movement” as-
sumption, e.g. in a winner-take-all scheme, would lead to somewhat
higher classification percentages.

The results show that classification performance varies, not un-
expectedly, with the choice of attribute sets. For the simple move-
ment patterns used here, position information, possibly enhanced by
velocity and acceleration information, was clearly sufficient for en-
coding and learning the movement patterns. Curvature and torsion
information alone was insufficient, which is not surprising given that
the movements were fairly linear.

~u ~bs
~bt correct

xyz xyz xyz 95.4%
- xyz xyz 96.3%
- - xyz 43.1%

va va va 52.2%
- va va 46.6%
- - va 28.3%

k� k� k� 34.6%
- k� k� 40.7%
- - k� 28.9%

xyzva xyzva xyzva 90.8%
- xyzva xyzva 96.5%
- - xyzva 33.1%

Table 1. Performance of CRGST for learning three different types of
grasping actions. The first three columns indicate what attributes were used
for unary, spatial binary and temporal binary relations, and the last column
indicates the percentage of test pattern points that was classified correctly.

Dashes indicate that no feature was used. xyz: position in 3D; v: velocity: a:
acceleration; k: curvature;� : torsion.

An example of a classification rule generated by CRGST is the
following rule, which happens to be of the formU�Bt�U�Bt�U ,
with V = velocity; A = acceleration;�X = displacement (over time)
in X; �Y = displacement (over time) in Y:

if U(t) �1:34 � V � 7:9 and
�2:93 � A � 1:54

and T(t,t+1) �0:16 � �X � 0:07 and
�6:51 � �Y � 5:37

and U(t+1) any value
and T(t+1,t+2) �5:39 � �X � 0:08

and�6:51 � �Y � 5:37
and U(t+2) 4:74 � V � 5:04 and

�:78 � A � �0:06
then this is part of a grasping action

moving over an obstacle



The results show that CRGST is a promising technique for the learn-
ing of motion patterns. Obviously, the movement patterns used here
were very simple, but work is currently in progress on the encoding
and learning of much more complex movement sequences, as well as
on extensions of temporal coding to allow temporal interval model-
ing.

5 Conclusions

We have considered an extension of a spatial relational learning
model to learning of spatio-temporal patterns such as complex hu-
man actions and gestures. What differentiates our CRGST approach
from models like hidden Markov models is that the rules are capable
of generalizing over higher-order spatial and temporal relations. Fur-
ther, the resultant rule forms are Horn clauses whose structures and
lengths are constrained by the general topology of the underlying
models and by a Minimum Description Length criterion.

REFERENCES
[1] W. F. Bischof and T. Caelli, ‘Learning structural descriptions of pat-

terns: A new technique for conditional clustering and rule generation’,
Pattern Recognition, 27, 1231–1248, (1994).

[2] W. F. Bischof and T. Caelli, ‘Scene understanding by rule evaluation’,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19,
1284–1288, (1997).

[3] Machine Learning and Image Interpretation, eds., T. Caelli and W. F.
Bischof, Plenum, New York, NY, 1997.

[4] T. Caelli, L. Guan, and W. Wen, ‘Modularity in neural computing’,Pro-
ceedings of the IEEE, 87, 1497–1518, (1999).

[5] T. Caelli, A. McCabe, and G. Binsted, ‘On the 3D measurement and
representations of human actions’, (2000).

[6] T. Caelli, G. West, M. Robey, and E. Osman, ‘A relational learning
method for pattern and object recognition’,Image and Vision Comput-
ing, 17, 391–401, (1999).

[7] C. Dillon and T. Caelli, ‘Cite – scene understanding and object recog-
nition’, in Machine Learning and Image Interpretation, eds., T. Caelli
and W. F. Bischof, 119–187, Plenum, New York, NY, (1997).

[8] B. McCane and T. Caelli, ‘Fuzzy conditional rule generation for the
learning and recognition of 3d objects from 2d images’, inMachine
Learning and Image Interpretation, eds., T. Caelli and W. F. Bischof,
17–66, Plenum, New York, NY, (1997).

[9] J. R. Quinlan, ‘Mdl and categorical theories (continued)’, inProceed-
ings of the 12th International Conference on Machine Learning, pp.
464–470, (1995).

[10] F. H. Raab, E. B. Blood, T. O. Steiner, and H. R. Jones, ‘Magnetic posi-
tion and orientation tracking system’,IEEE Transactions on Aerospace
and Electronic Systems, AES-15, 709–, (1979).

[11] L. Rabiner and B.-H. Juang,Fundamentals of Speech Recognition,
Prentice Hall, New York, NY, 1993.

[12] D. H. Wolpert, ‘Stacked generalization’,Neural Networks, 5, 241–259,
(1992).





An High-Level Vision System for
the Symbolic Interpretation of Dynamic Scenes

by the ARSOM Neural Networks
Antonio Chella1, Donatella Guarino2, Ignazio Infantino3 and Roberto Pirrone4

Abstract. We describe an artificial high-level vision system for the
symbolic interpretation of data coming from a video camera that ac-
quires the image sequences of moving scenes. The system is based
on ARSOM Neural Networks that learn to generate the perception
grounded predicates obtained by image sequences. The ARSOM
Neural Networks also provide a 3D estimation of the movements of
the relevant objects in the scene. The vision systems has been em-
ployed in two scenarios: the monitoring of a robot arm suitable for
space operations, and the surveillance of a EDP center.

1 INTRODUCTION

We describe an artificial high-level vision agent for the symbolic in-
terpretation of data coming from a video camera that acquires image
sequences of moving objects and persons. The agent generates the
perception grounded predicates that suitably describe the dynamic
scenes.

Figure 1. The SPIDER scenario.

The agent integrates a perception component which is based on
robust techniques of computer vision, with a scene description com-
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Figure 2. The CUC scenario.

ponent based on ARSOM Neural Networks [8, 9] that generate the
symbols describing the dynamic scene. The results of these compo-
nents are the input of the visualization component that presents the
data results by an advanced user interface.

The vision agent is aimed at advancing the state of art in the field of
robotics by introducing and integrating different AI techniques that
offer a unique opportunity for providing effective greater degrees of
autonomy for robotic systems [2, 3].

The vision agent has been employed in two scenarios of interest:

SPIDER In this scenario, images come from a video camera that
acquires the movements of the SPIDER robot arm [4, 5, 11] (built
by the Italian Space Agency for space applications) during its op-
erations. The agent generates the perception grounded predicates
obtained by image sequences thus allowing the scientist user of
SPIDER to receive meaningful feedback of his operations on the
arm during a scientific experiment (Fig. 1).

CUC In this scenario, images come from a video camera posed
at the entrance of the EDP Center (CUC) of the University of
Palermo. The agent generates the description of the postures of
a person at the entrance of the center, for generating attention de-
grees of the surveillance persons (Fig. 2).

2 THE PERCEPTION COMPONENT

The perception component of the proposed system processes the im-
age data coming from a video camera that acquires the images of the



moving scene. The main task of this component in both scenarios is
to find the interesting points in the dynamic scene along with their
motion.

In particular, in the SPIDER scenario the interesting points are the
joint positions of the arm. It should be noted that this estimation,
which is solely generated by the visual data, may be useful for fault
identifications of the position sensors placed on the joints of the arm.

Similarly, in the CUC scenario, the interesting points are the char-
acteristic points describing the posture of the persons at the entrance
of the EDP center.

The images acquired by the camera are processed to extract the
contours of the object of interest by a suitable algorithm based on
snakes [1]. A snake is a deformable curve that moves in the image
under the influence of forces related to the local distribution of the
gray levels. When the snake reaches an object contour, it is adapted
to its shape.

Formally, a snake as an open or closed contour is described in a
parametric form by:

v(s) = (x(s), y(s)) (1)

where x(s) and y(s) are the coordinates along the shape contour and
s is the normalized arc length:

s ∈ [0, 1] (2)

In the SPIDER scenario, the adopted snake model is based on cir-
cles and squares to better extract the arm components; in the CUC
scenario the adopted snake model is based on a closed contour adapt-
ing to the person shape.

The snake model defines the snake energy of a contour Esnake, to
be:

Esnake(v(s)) =

∫ 1

0

(Eint(v(s)) + Eimage(v(s))ds (3)

The energy integral is a functional since its variable s is a func-
tion (the shape contour). The internal energy Eint is formed from a
Tikhonov stabilizer and is defined by:

Eint(vvs)) = a(s)

∣∣∣∣dv(s)2

ds2

∣∣∣∣ + b(s)

∣∣∣∣dv(s)2

ds2

∣∣∣∣
2

(4)

where |.| is the Euclidean norm.
The first order continuity term, weighted by a(s), let the contours

behave elastically, whilst the second order curvature term, weighted
by b(s), let it be resistant to bending. For example, setting b(s) = 0
at point s, allows the snake to become second-order discontinuous at
point and to generate a corner.

The image functional determines the features which will have a
low image energy and hence the features that attract the contours. In
general, this functional is made up by three terms:

Eimage = wlineTline + wedgeEedge + wtermEterm (5)

where w denotes a weighting constant. The w and E corresponds to
lines, edges and termination, respectively.

The snake model adopted in our scenarios presents only the edge
functional which attracts the snake to points with an high edge gra-
dient:

Figure 3. Contours extracted in the SPIDER scenario.

Figure 4. Contours extracted in the CUC scenario.

Figure 5. The skeleton extracted in the SPIDER scenario.



Figure 6. The skeleton extracted in the CUC scenario.

Eimage = Eedge = −(Gσ ∗ ∇2I(x, y))2 (6)

This is the image functional proposed by Kass, Witkin and Ter-
zoupolos [6]. It is a scale based edge operator that increases the lo-
cus of attraction of energy minimum. Gσ is a Gaussian of standard
deviation sigma which controls the smoothing process prior to edge
operator. Minima of Eedge lies on zero-crossing of Gσ ∗ ∇2I(x, y)
which defines the edges according to the theory of Marr [10].

The implemented snake allows to extract the interesting parts of
the scenarios in a simple way and in short time. Fig. 3 shows the
results in the SPIDER scenario and Fig. 4 shows the results in the
CUC scenario.

After this step, we employ the well known skeletonizing algorithm
of Zhang and Suen [13] to extract the skeletons of the areas so found.
Fig. 5 shows the skeleton in the SPIDER scenario and Fig. 6 shows
the skeleton in the CUC scenario.

3 THE SCENE DESCRIPTION COMPONENT

From the extracted skeletons it is immediate to estimate the posi-
tion of the interesting points previously described, characterizing the
posture of the SPIDER arm or the posture of a person in the CUC
scenario.

Let us consider a generic interesting point i of the scene in a sce-
nario at time t; the point is characterized by its 3D coordinates:

xi(t), yi(t), zi(t) (7)

A generic posture at time t of the robot arm or of a person is char-
acterized by the vector x(t) which individuates the m interesting
points describing the posture itself:

x(t) =




x1(t), y1(t), z1(t)
x2(t), y2(t), z2(t)

...
xn(t), yn(t), zm(t)


 (8)

The snake information allows us to estimate only the first and the
second coordinates of each point, i.e., their projection in the image
plane:

x′(t) =




x1(t), y1(t), .
x2(t), y2(t), .

...
xn(t), ym(t), .


 (9)

The scene description component receives as input the vector x′

from the perception component and it generates a symbolic descrip-
tion of the posture. This component is based on the ARSOM neu-
ral network, a self-organizing neural network with a suitable explicit
representation of time sequences [8, 9].

Each unit of the ARSOM is an autoregressive (AR) filter, able to
classify and recognize variable inputs. Therefore, each unit charac-
terizes a sequence of movements of the posture points. The map auto-
organizes itself during an unsupervised learning phase, as a standard
SOM map.

Let us consider a generic movement of the robot arm or of a
person. The movement is characterized by a sequence of n posture
points:

x(t),x(t − 1), . . . ,x(t − (n − 1)) (10)

The AR model associated with this movement is:

x(t + 1) = A0x(t) + A1x(t − 1) + . . . (11)

. . . + An−1x(t − (n − 1)) + e(t)

The order of this AR model is n, the A0,A1, . . . ,An−1 matrices
are the weights of the model, and e(t) is the error matrix.

Let us denote with B the global matrix related to the weight ma-
trices:

B = [A0,A1, . . . ,An−1]
T (12)

and with X(t) the global matrix related to the time evolution of the
posture points:

X(t) = [x(t),x(t − 1), . . . ,x(t − (n − 1))]T (13)

We may write Eq. (11) in a more compact form:

x(t + 1) = XT (t)B + e(t) (14)

The optimal weights matrices are found by minimizing the error
matrix e(t). We have adopted the LMS iterative method, that is:

Bnew = Bold + hcie(t)X(t) (15)

where hci is the neighborhood kernel:

hci =

{
1/2r2 if i ∈ Nc

0 if i /∈ Nc
(16)

In this equation, r is a suitable parameter and Nc is the width of
the learning window.

The neural network, after a careful training phase, is able to clas-
sify the temporal sequences of movements of the interesting points
into meaningful prototypical predicates.



Figure 7. Error vs. learning epochs of the ARSOM network.

Currently, we have two similar ARSOM neural networks: one for
the SPIDER scenario and the other for the CUC scenario. We are ex-
perimenting the possibility to have one networks for both scenarios.

Fig. 7 shows the diagram of the error of the neural network dur-
ing the training phase. It should be noted that, after a few hundred
learning steps, the error of the network is near zero value. The figure
is related with the SPIDER scenario; a similar behavior occurs in the
CUC scenario.

When the estimation of the coordinates of the interesting point in
the image plane are presented to the network:

x′(t),x′(t − 1), . . . ,x′(t − (n − 1)), (17)

the network is able to predict the full vector x(t + 1), i.e., the vector
with all the three coordinates of the posture.

Figure 8. Prediction error of the ARSOM network.

Fig. 8 shows the prediction error of the network during its opera-
tions in the SPIDER scenario. It should be noted that the error, while
is variable, it maintains in a reasonable limit. Similar behaviors have
been observed in the CUC scenario.

Figs. 9 and 10 show the recovered 3D situations, respectively in
the SPIDER and CUC scenarios, as predicted by the ARSOM neural
networks.

The network is also able to perform a classification of the global
arm movement and to present as output a symbolic predicate describ-
ing the movement itself.

Figure 9. 3D recovery of the SPIDER scenario.

Examples of the learned predicates describing the operations of
the arm in the SPIDER scenario are: Stretching up, Stretching down,
Seizing, Grasping. Examples of the learned predicates in the CUC
scenario are: Entering, Exiting, Opening, Closing, Looking inside,
Staying.

The neural network approach presents the main advantage that it
avoids an explicit description of the discrimination functions for the
arm operations, as this function is learned during the training phase.

Furthermore, the neural network is robust with respect to the noise,
as it is able to correctly classify the arm operations also when the
movements estimations of some links are missing or corrupted.

Figure 10. 3D recovery of the CUC scenario.

In the operation tests performed in the SPIDER scenario, the net-
work has been able to perform the 100% success on the classification
task. To analyze the operation of the network, tests are performed on
the recognition task when some links information is missed. Tab. 11
reports the obtained results. It should be noted that in the worst case,
when the two links 1 and 3 are missing, the network is able to per-
form 51% of success recognition.

Also the performances of the system in the CUC scenario are
good. Up to now, we have obtained about 94% of recognition suc-
cess on the classification task. It should be noted that in this case, we
have chosen to take into account only simple actions, as previously
described. Currently, we are generalizing the system on a larger set



Miss. link % Rec.
0 100
1 75
2 74
3 62

1,3 51

Figure 11. Recognition % vs missing link in the SPIDER scenario.

of more rich and realistic situations.

4 THE VISUALIZATION COMPONENT

The scene description component of the system receives as input the
data coming from the perception component and of the scene de-
scription component, and it generates a graphic 3D representation
of the scene. The visualization component provides also the graphic
interface for the whole agent. In the following we will describe the
interface for the SPIDER scenario; similar consideration hold for the
CUC scenario.

Figure 12. The user interface of the system.

Fig. 12 shows the results of the visualization component of the
system for the SPIDER scenario. The scientist user of the system
may view the arm operations from different point of views and he
may navigate in the reconstructed environment.

He may also supervise and intervene in all the processing steps
occurring in the agent itself: e.g., he may change the parameters of
the perception component modules or he may tune the learning phase
of the neural network in the scene description component.

The interface of the system presents several windows in order to
provide the user scientist with a full control of the system.

The camera window shows the output image sequences of the
video camera acquiring the real robot arm operations along with su-
perimposition of the snake representing the output of the contour ex-
traction module.

The 3D window shows the images representing the 3D reconstruc-
tion of the arm during its operations, and the description window

shows the symbolic descriptions generated by the scene description
component in terms of symbolic predicates.

A simple user interface based on buttons allows the scientist to
modify the inner parameters of the agent in order to tailor the agent
processing steps.

The graphical interface has been realized by using the OpenGL
and the GLUT library [7, 12].

5 CONCLUSION

The research demonstrated how the implemented artificial high-level
vision agent may be an effective tool for monitoring operations. In
the case of the SPIDER scenario, the user scientist of the arm can
monitor his own operations by providing high-level feedback de-
scriptions of the arm movements during the scientific experiments. In
the case of the CUC scenario, the surveillance persons can be alerted
of possible dangerous situations near the EDP center that require spe-
cial attention.

The described system is fully general and it may be employed in
all the fields in which the interactive autonomy of the space robotic
systems is a mandatory requirement. The system will also give a
valuable contribution to the use of the expensive and state of the art
equipment related to space robotics and to surveillance robotics. Of
great importance are the possible industrial application of the de-
scribed system. It could be employed in all the applications that re-
quire high automatic tasks in interactive autonomy, as the submarine
robots and autonomous systems acting in nuclear plants.
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An Application of Machine Learning and Statistics to
Defect Detection

R. Cucchiara1, P. Mello2, M. Piccardi3, F. Riguzzi3

Abstract.  We present an application of Machine Learning and
Statistics to the problem of distinguishing between defective and
non-defective industrial workpieces, where the defect takes the
form of a long and thin crack on the surface of the piece.  The
images of the pieces are described by means of a set of visual
primitives, including the Hough transform and the Correlated
Hough transform. We have compared an attribute-value learner,
C4.5, a backpropagation neural network, NeuralWare Predict, and
the statistical techniques linear, logistic and quadratic discriminant
for the classification of pieces. Moreover, two feature sets are
considered, one containing only the Hough transform and the other
one containing also the Correlated Hough Transform. The results
of the experiments show that C4.5 performs best for both feature
sets and gives an average accuracy of  93.3 % for the first dataset
and 95,9 % for the second dataset.

1 INTRODUCTION

We present an application of Machine Learning and Statistics to a
problem of Automated Visual Inspection (AVI) that consists of
automatically inspecting the quality of metallic industrial
workpieces.  The aim is to classify each piece as defective or non-
defective depending on whether it contains or not surface defects,
visible only under UV light.  The surface defect is a crack that is
visible under UV light as a bright, thin and roughly rectilinear
shape.

In order to recognize cracks, a set of visual primitives have been
selected for characterizing the images of pieces.  In this way, each
image is described by a set of numerical attributes and machine
learning can be applied in order to find a classifier for new images.

In particular, we use the Hough transform (HT) that has been
proposed in the literature of image analysis for detecting straight
lines [1].  The HT transforms the image space into another two
dimensional space (called Hough space) where each local
maximum point corresponds to a straight edge in the image space.
Moreover, another transformation is used, the Correlated Hough
transform (CHT), that has the specific aim of detecting shapes that
are bright, rectilinear and thin [2].  The CHT transforms an image
from the Hough space to the Correlated Hough Space where each
local maximum point represents a couple of close, straight edges in
the image.

In order to test the effectiveness of these various primitives on
classification, we have considered two different datasets, one

containing features from the Hough and the Correlated Hough
space, and another one containing features from the Hough space
only.

On the two datasets, we have compared an attribute-value
learner, C4.5, a backpropagation neural network, NeuralWare
Predict, and the statistical techniques linear, logistic and quadratic
discriminant.

The paper is divided as follows: next section introduces the
specific application.  Section 3 discusses the adopted visual
primitives.  Section 4 discusses the results of experiments,
providing a comparative analysis among the different algorithms.
Finally, the last section provide final conclusions.

2 DEFECT DETECTION

The application goal is visual quality inspection of metallic
industrial workpieces and in particular the location of surface and
subsurface discontinuities in ferromagnetic materials.

This target can not be reached by normal, visible-light
inspection but is usually accomplished by adopting a “Magnetic-
Particle Inspection” technique (MPI) [3]. First, the piece is
magnetized and dipped in a water suspension of fluorescent
ferromagnetic particles; then, it is exposed under ultraviolet light
and examined by a human inspector. When surface or subsurface
defects are present, they produce a leakage field that attracts and
concentrates the ferromagnetic particles. Defects can then be easily
perceived by the human eye, since ultraviolet light greatly
enhances fluorescence.  Off-the-shelf CCD cameras and frame
grabbers hosted by commercial PCs are used in order to acquire
the images.

Examples of images with cracks are shown in figures 1, 2 and 3.
Figure 1 shows a whole image, while figures. 2 and 3 show in
details two cracks, more and less evident respectively.

Figure 1.  Image with a crack.
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Figure 2.  Detail of an evident crack.

 Figure 3.   Detail of a less evident crack.

3 CLASSIFICATION BY VISUAL
PRIMITIVES

The defect shape was a-priori known by means of a qualitative
model provided by human inspectors.  They defined it as a
“thin, roughly rectilinear and very bright shape”.

On the basis of this rather generic model, we elicited a set of
visual primitives (properties) that can be used for describing the
defects, by associating measurable object properties with the
attributes of the qualitative model:
• bright shape → high local gradient of luminosity in the

proximity of its edges;
• rectilinear → with two main edges approximately straight;
• thin → with an upper-bounded distance between the two main

edges.
Once elicited the visual properties, a set of quantitative image

operators able to reflect them has to be defined. Usually, the
approach consists of defining a rather large set of image operators,
or features, each of them somehow related to one or more visual
properties, which will be later selected by a machine learning
phase (feature selection). However, the choice of the initial feature
set is critical since the information lost at this step cannot be
recovered later.

To this aim, we defined and compared two different feature
sets, motivated by opposite rationale: in the first set, we included a
specialized primitive called Correlated Hough transform (CHT
[2]), which has been proposed for detection of objects
corresponding exactly to our model; in the second set, we used
only image operators of general use. The two feature sets reflect a
different control of the visual aspects of the problem, the first one
calling for the insight on image operators typical of a computer
vision specialist, while the second one requires just an off-the-shelf
use of well-known image operators.

Both feature sets include the Hough transform (HT), which
essentials is sketched hereafter. The HT has been proposed in the
computer vision literature to detect straight lines [1]. It consists of
the following space transformation from the image space to a 2-
coordinate parameter space: “collinear” points forming a straight
line segment in the image space are collected into a single point of
the parameter space, where the point’s first co-ordinate, ϑ, is the
slope of the straight line and the second co-ordinate, ρ, is its
distance from the origin. Each point in the Hough space has a
value which is exactly the number of collinear points in the straight
line segment; thus, the longer the line segment, the higher is the
point’s value in the Hough space. Furthermore, in this work we
adopted a refined version of the Hough transform, called gradient-
weighted Hough transform (GWHT, [1]) in which each collinear
point is weighted by its luminosity gradient. Therefore, peaks in
the Hough space (i.e., points with high values) correspond to the
existence of straight, bright lines in the image space, or we could
also say that the problem of detecting lines in the image space is
converted in the much easier problem of detecting peaks in the
Hough space.

In our images, a crack has two edges with similar gradient
magnitude (with same direction but opposite orientation); since the
crack is thin, the distance between the two edges is upper-bounded.
Therefore, two peaks must be detected in the Hough space, with
similar values and their ρ, ϑ parameters mutually constrained. In
alternative to the separate detection of these two peaks, it is
possible to exploit the Correlated Hough transform. The CHT
performs a post-processing of the GWHT Hough space by
correlating the area where the first peak is detected with the one
where the second peak should be located: if it is actually present,
the resulting correlation value is very high and can be easily
detected. The CHT has been proven robust to non-ideality and
noise, since the detection after correlation is more reliable than the
detection of the two separate peaks in the Hough space. However,
the CHT itself is not enough for detecting cracks when they
strongly differ from their ideal aspect, and therefore we added in
the feature set many other features related with the model.
The set based on the CHT (called CH dataset) contains the
following features:

1. CH (Correlated_Hough_Peak):     this is the maximum value in
the correlated Hough space; its ρ, ϑ co-ordinates correspond to
the parameters of a straight line in the image located on the
crack, in case a crack is present.

2. H1 (First_Hough_Peak): this is the value in the same point of
the Hough space before correlation, in the range ϑ ∈[0,π],
where the first peak is formed in case a crack is present.

3. H2 (Second_Hough_Peak): it is the peak in the Hough space
between π and 2π at the ideal point were a second straight edge
should be found.

4. H22 (Second_Hough_Average): this feature is CH divided by
H1; it measures how much the correlation operation increases
the evidence of the crack with respect to the uncorrelated
Hough space.

5. Thickness: the mutual distance between H1 and H2. It
represents the object thickness.

6. Number_of_Points: the number of voting points accumulated in
H1, which estimates the edge length.

7. Average_Vote: the average "vote" of the voting points, i.e. the
average luminosity gradient of each point voting for H1 (it is
computed by dividing H1 by the Number_of_Points); it



measures the average luminosity gradient along the crack
profile.

8. Average_Image_Gradient: the average luminosity gradient of
the image; it is a different property with respect to the others,
since it is global, meaning that it is an overall feature of the
whole image. It might be used by the classifier as a corrective
weight, since images with low values of the average gradient
have proportionally lower CH and Hough space values.

Operationally, we acquire images with relevant views of the
mechanical piece and for each image we compute the CHT. Then,
we detect the CHT maximum (the CH feature) and record a tuple
with CH and the other associated feature values. We then detect all
the points of the correlated Hough space whose value is greater or
equal an assigned percentage of the maximum (75% was used in
the experiments), and record a tuple for each of them; this is done
in order to catch multiple cracks that can be present in a single
image. After acquiring the tuples, we pre-classified each of them
into the two categories of Defect or NoDefect by checking
manually if the straight line segment corresponding with the tuple
was located on a real crack in the image or not.

In the approach followed, the CHT plays a major role, since the
CH maximum is the feature that determines the position where the
crack may be located. However, the CHT is a highly specialized
operator, and it is interesting to approach the problem with a
feature set with more standard features, and comparing the
performance of the resulting classifiers.

Therefore, in the second dataset set (called H1 H2 dataset) we
excluded the CH value and included the following features:

1. H1: the value of the Hough maximum in the range ϑ ∈[0,π],
where the first peak is formed in case a crack is present; its ρ, ϑ
co-ordinates correspond to the parameters of a straight line
located on one edge of the crack.

2. H2: the value of the Hough maximum in the range ϑ ∈[π, 2π],
where the second peak is formed in case a crack is present; its
ρ’, ϑ’ co-ordinates correspond to the parameters of a straight
line located on the other edge of the crack. However, if multiple
cracks are present, H1 and H2 may not be associated with the
same crack.

3. Number_of_Votes: the sum of the number of image points that
were transformed into H1 and H2.

4. Distance: the mutual distance between H1 and H2 in the Hough
space. It represents the object thickness if H1 and H2
correspond to the same crack.

5. Delta_rho: the |ρ’ - ρ| value, and
6. Delta_theta: the |ϑ’ - ϑ - π | value. Delta_rho and Delta_theta

express the distance between the two peaks along the ρ and ϑ
directions, respectively. In case of a same real crack,
Delta_theta should be close to 0 and Delta_rho upper bounded.
Delta_rho and Delta_theta are related to Distance by the
following formula :

       Distance= 22 __ thetaDeltarhoDelta + .

7. Delta_product: the product delta_rho * delta_theta. It correlates
the Delta_rho and Delta_theta values, expecting small values
for the product in case of a same real crack.

8. Average_Image_Gradient: The average luminosity gradient of
the image.

Since there is not an explicit correlation operation between H1
and H2, we also added some basic arithmetic functions of the
H1 and H2 values:

9. Product: the product H1 * H2: should be high in case of a real
crack (about the square of each of the two values).

10. Ratio: the ratio H1 / H2: should be close to 1 in case of a real
crack.

11. Sum: the sum H1 + H2: should be high in case of a real crack
(about double each of the two values).

12. Difference: the difference H1 - H2: should be close to 0 in case
of a real crack.

These arithmetic functions are just combinations of other
features and thus may be considered redundant, but they have
been explicitely included in the feature set since they are related
with the model and may improve the classifiers’ performance in
case the classifier does not explore linear or quadratic
combinations or ratios of the feature values.

Operationally, we acquire images with relevant views of the
mechanical piece and for each image we compute the Hough space
with the GWHT. Then, we detect the H1 and H2 maxima and
record them in a tuple with the other associated feature values. We
then repeat the process for all the points of the Hough space in the
range [0, π] and [π, 2π] whose value is greater or equal an assigned
percentage of H1 and H2, respectively, and record a tuple for each
couple; this is done in order to catch multiple cracks that can be
present in a single image. After acquiring the tuples, we pre-
classified each of them into the two categories of Defect or
NoDefect by checking manually if the straight line segments
corresponding with H1 and H2 were located on a same real crack.

4 EXPERIMENTS

We have experimented and compared two different machine
learning techniques:  attribute-value learning and
backpropagation neural networks.  Moreover, due to the
numeric nature of all the attributes, we have used statistical
techniques as well in order to compare their performance with
that of machine learning tools.

For attribute-value learning we have used C4.5 [4] that is able
to learn both decision trees and rules. For backpropagtion neural
networks, we have employed a commercial system, Predict by
NeuralWare1.  As regards statistical techniques, we have used the
algorithms Discrim, Logdisc and Quadisc, developed under the
Statlog project [5], that implement respectively linear discriminant,
logistic discriminant and quadratic discriminant.

In the following, we first give a brief description of each
algorithm and then we present the results of experiments.

5  Discrim

Discrim finds a linear discriminant, i.e., an hyperplane in the p-
dimensional space of the attributes.  Given the values of the
attributes of a new pattern, its class is found by looking at the
position of the corresponding point with respect to the
hyperplane.

1 More information about Predict can be found at
http://www.neuralware.com/ .



The hyperplane equation is found on the assumption of normal
probability distribution:  the attribute vectors for the examples of
class Ai are independent and follow a certain probability
distribution with probability density function (pdf) fi.  A new point
with attribute vector x is then assigned to that class for which the
probability density function fi(x) is greatest.  This is  a maximum
likelihood method.  The distribution are assumed normal (or
Gaussian) with different means but the same covariance matrix.
The probability density function of the normal distribution is
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where µ is a p-dimensional vector denoting the theoretical mean
for class i and Σ, the theoretical covariance matrix, is a p × p
matrix that is necessarily positive definite.  In this case the
boundary separating the two classes, defined by the equality of the
pdfs, can be shown to be an hyperplane that passes through the
mid-point of the two centres. Its equation is
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where µi is the population mean for class Ai.  When using this
formula for classification the exact distribution is usually not
known and the parameters must be estimated from the available
sample.  With two classes, if the sample means are substituted for
µi and the pooled sample covariance matrix for Σ, then Fisher’s
linear discriminant [6] is obtained. The covariance matrix for a
dataset with ni examples from class Ai is
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Where X is the ni × p matrix of attribute values and x is the p-
dimensional row vector of attribute means.  The pooled covariance
matrix S is
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where the summation is over all the classes and (n-q) is chosen
to make the pooled covariance matrix unbiased.

6 Quadisc

Quadisc performs a quadratic discrimination.  Quadratic
discrimination is similar to linear discrimination with the
difference that the surface separating the two regions is
quadratic.  This means that in the discriminating function will
contain not only the attributes but also their square and the
product of two attributes.  With respect to the case of
probability maximization seen in the previous case, if we
remove the assumption that the normal distributions have the
same covariance matrix S, we obtain a quadratic surface, for
example an ellipsoid or an hyperboloid.

The simplest quadratic discrimination function for a class is
defined as the logarithm of the corresponding probability density

function and is given by equation 5 in the case of differing prior
probabilities.  The suffix i is used to indicate class Ai.
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In this equation πi stands for the prior probability of class Ai. As
before, the means and covariance matrix are substituted by their
sample counterparts obtained from the training set.  In the same
way, πi is substituted by the sample proportion of class Ai

examples.  For classification, the discriminant is calculated for
each class and the one giving the higher value is chosen.

The most frequent problem with quadratic discriminants is
caused when some attribute has zero variance in one class, for then
the covariance matrix can not be inverted.  One way of avoiding
this problem is to add a small positive constant term to the
diagonal terms in the covariance matrix (this corresponds to adding
random noise to the attributes).

7 Logdisc

Logdisc performs a logistic discrimination.  As linear
discriminants, a logistic discriminant consists of an hyperplane
separating the classes in the best possible way, but the criterion
used to find the hyperplane is different.  The method adopted in
this procedure is to maximize a conditional probability.  In theory,
when the attributes have a normal distribution with equal
covariances and are independent from each other, linear and
logistic discriminants are equivalent.  Different result are obtained
when this hypothesis are not satisfied.

The method here described is partially parametric, as the actual
pdfs for the classes are not modeled, but rather the ratio between
them.  In particular the logarithms of the ratios of the probability
density functions for the classes are modelled as linear functions of
the attributes.  Thus, for two classes
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where α and the p-dimensional vector β are the parameters of
the adopted model and must be estimated.  The case of normal
distribution is a special case in which these parameters are
functions of the prior probabilities, of the class means and of the
common covariance matrix.

The parameters are estimated by maximum conditional
likelihood.  The model implies that, given attribute values x, the
conditional class probabilities for classes A1 and A2 take the forms:
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Given independent samples for the two classes, the parameters
are estimated by maximizing the probability:
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Iterative methods have been proposed in order to estimate the
parameters for example by [7] and [8].  Since in practice there is
often little difference between logistic and linear discriminant, the
latter are taken as a starting point for the former.

8 NeuralWorks Predict

Predict by Neural Works is a system for training multi-layer
neural nets.  Predict use an adaptive gradient learning rule which is
a form of back-propagation.  Predict does not start from a fixed
network architecture but uses a constructive method for
determining a suitable number of hidden nodes.  This constructive
method is referred to as "Cascade Learning" [10] and is loosely
characterised by the fact that hidden nodes are added one or a few
at a time.  New hidden nodes have connections from both the input
buffer and the previously established hidden nodes.  Construction
is stopped when performance on an independent test set shows no
further improvement.

9 C4.5

C4.5 [4] is a system for learning rules and decision trees.  Its
peculiarity is the heuristics it adopts in order to select the test to
perform at each steps.  These heuristics are based on the notion of
entropy from information theory that represents the amount of
“dis-uniformity” of examples in the training set with respect to the

class attributes:  at each step a test is selected that makes the
resulting subsets as uniform as possible with respect to the class
attribute, i.e., subsets containing examples from only one class or
from a small number of classes.

10 Results

All systems have been tested on the CH and H1 H2 datasets
employing 10-fold cross validation.  Both datasets contain 317
tuples of which 67 belong to the Defect class and 250 to the
NonDefect class. The spread of attribute values is larger for the
Defect class.

Table 1 shows the average accuracies of the classification
algorithms for both datasets, while table 2 shows the total number
of false negative and false positive errors summed over the ten
folds.  False negatives are defective pieces that are classified as
non defective and false positive are non defective pieces that are
classified as defective.  It is important to distinguish between these
two types of errors because the damage that derives from a false
negative is much higher than the one deriving from a false positive.
Therefore, we should prefer an algorithm that minimizes the
number of false negatives.

In order to evaluate if the accuracy differences between
algorithms are significant, we have computed a 10-fold cross-
validated paired t test for every pair of algorithms (see [11] for an
overview of statistical tests for the comparison of machine learning
algorithms).

This test is computed as follows.   Given two algorithms A and
B, let pA

(i) (respectively pB
(i)) be the observed proportion of test

examples misclassified by algorrithm A (respectively B) in trial i.

Table 1.   Average accuracies
Discrim Logdisc Quadisc Predict C4.5 tree C4.5

rules

CH 0,853 0,857 0,853 0,873 0,959 0,959

H1 H2 0,855 0,928 0,316 0,864 0,933 0,933

Table 2.   Average false positive and false negative errors

Discrim Logdisc Quadisc Predict C4.5 tree C4.5 rules

FN FP FN FP FN FP FN FP FN FP FN FP

CH 37 9 36 9 31 15 15 25 6 7 6 7

H1 H2 26 19 14 9 40 177 3 40 13 8 12 9

Table 3.   Values for the t statistics for the CH dataset

t Discrim Logdisc Quadisc Predict C4.5 tree C4.5 rules

Discrim 1,000 0,000 0,452 1,947 1,947

Logdisc 0,166 0,376 1,959 1,959

Quadratic 0,615 2,352 2,352

Predict 2,031 2,031

C4.5 tree 0,000

Table 4. Values for the t statistics for the H1 H2 dataset

t Discrim Logdisc Quadisc Predict C4.5 tree C4.5 rules

Discrim 1,753 2,114 0,118 1,586 1,689

Logdisc 2,411 0,867 0,127 0,135

Quadisc 2,509 3,068 3,050

Predict 0,843 0,858

C4.5 tree 0,000



If we assume that the 10 differences p(i)=pA
(i)-pB

(i) are drawn
independently from a normal distribution, then we can apply
Student t test by computing the statistic
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In the null hypothesis, i.e. that A and B have the same accuracy,
this statistic has a t distribution with n-1 (9) degrees of freedom.  If
we consider a probability of 90%, then the null hypothesis can be
rejected if

383.190.0,9 => tt (12)

Table 3 shows the values of the statistic for the CH dataset,
while table 4 shows the values of the statistic for the H1 H2
dataset.  The value of the statistic for algorithms A and B can be
found at the crossing of line A with column B.  The numbers in
bold are those that provide a probability of 90% or more of
rejecting the null hypothesis.

From these tables can be seen that, for the CH dataset, the
accuracy difference is statistically significant only between C4.5
algorithms and the other ones, while it is not statistically
significant among the statistical and neural algorithms.  Therefore,
for the CH dataset, we can state that the best performance has been
obtained by C4.5, both for the case of trees and rules.

On the H1 H2 dataset there is a significant difference between
the best performing algorithms, C4.5 and Logdisc, and Discrim
and Quadisc.  The difference among the best performing
algorithms and Predict is instead a little less certain, having 80%
probability.

In conclusion, for both datasets, the best overall accuracy has
been obtained by C4.5 both for the case of trees and rules.  The
comparison of machine learning and statistical techniques shows
that C4.5 performs better than statistical techniques for the CH
dataset, while on H1 H2 dataset Logdisc is equivalent to C4.5.
Instead, for Predict, the differences with statistical techniques are
less significant.

As can be seen, the CH feature is very important because it
leads to more accurate classifiers for all systems apart from
Logdisc and Discrim.

As regards the number of false negatives, C4.5 yields the lowest
number of them for the CH dataset, while for the H1 H2 dataset the
lowest number is given by Predict.

These results show that machine learning tools can outperform
statistical classifiers on the domain examined.

11 RELATED WORKS

Machine learning has been widely exploited for object
classification in computer vision. Learning is often essential for
defining an effective classifier in the case of unstructured objects
or shapes, which are difficult to model in terms of geometric,

topologic or other metric features. Examples of the use of learning
in computer vision are for instance recognition of hand gestures,
landscape inspection, medical images analysis, and appearance-
based recognition [11,12,13,14]. However, the most
comprehensive work concerning the use of learning for
classification is the StatLog project [5]. StatLog includes several
classification algorithms, covering machine learning, neural and
statistical techniques. The algorithms are compared against several
different classification tasks, nine of which consists of classifying
images (Dig44, KL, Vehicle, Letter, Chrom, Landsat, SatIm,
Segm, Cut20, Cut50). Some of the tasks address mostly
classification of pixel areas, while others address classification of
derived features computed from the pixel values. The ranking of
classifiers’ error rates varies with the image classification task. The
k-NN and Quadisc classifiers seem to achieve generally the best
error rates, but with some exceptions (Vehicle and Segm for k-NN
and SatIm, Segm, Cut20, Cut50 for Quadisc). The machine
learning algorithm C4.5 tends to assess good performance for tasks
which do not require direct classification of pixel areas, but rather
of some derived features (Segm, Cut20, Cut50). In particular, C4.5
largely outperforms Quadisc on the Cut classification tasks, where
the number of classes is mimimum (two), like in the defect
classification task we addressed in this work.

12 CONCLUSION

We have presented an application of machine learning and
statistics to the problem of recognizing surface cracks on metallic
pieces.  In order to learn from the images of the pieces, we have
identified a set of visual primitives for characterizing each image.
One of these primitives, the average gradient of luminosity, is
computed on the image itself, while the others are computed on
transformed versions of the image obtained with the Hough
Transform (HT) and the Correlated Hough Transform (CHT).  We
use these primitives because they have been expressively designed
for the recognition of straight lines and rectilinear shapes.

In order to test the effectiveness of these various primitives on
classification, we have considered two different datasets, one
containing features from the Hough and the Correlated Hough
space, and another one containing features from the Hough space
only.

Various machine learning and statistical techniques have been
applied to the problem.  As regards machine learning, we have
employed an attribute value learner, C4.5, and a neural network
trainer, NeuralWare Predict.  As regards statistical techniques, we
have employed linear, logistic and quadratic discriminant.

The results of the experiments show that, of the two feature
sets, the one containing the CHT leads to more accurate classifiers
for all learning methods apart from Logdisc and Quadisc, thus
confirming the importance of highly specialized operators for
Computer Vision.

Among all systems, C4.5 had a performance significantly
higher than the other systems for the CH dataset, while for the H1
H2 dataset it was significantly higher than Discrim and Quadisc.

Even if the features were all numeric, C4.5 provided a very
good performance.  This is probably due to spread in the attribute
values, especially for the Defect class, that requires the
adaptiveness of machine learning tools.
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Understanding Multi-Page Printed Documents: A
Multiple Concepts Learning Problem

Floriana Esposito and Donato Malerba and Francesca A. Lisi1

Abstract. Document understanding denotes the recognition of se-
mantically relevant components in the layout extracted from a docu-
ment image. This recognition process is based on some visual mod-
els, whose manual specification can be a highly demanding task. In
order to automatically acquire these models, the application of ma-
chine learning techniques has been proposed. In this paper, problems
raised by possible dependencies between concepts to be learned are
illustrated. A novel computational strategy based on the separate-
and-parallel-conquer search is proposed and tested on a set or real
multi-page documents processed by the system WISDOM++. Pre-
liminary results confirm the validity of the proposed strategy and
show some limits of the machine learning system used in this work.

1 INTRODUCTION

Recently, many publishing companies have started creating online
bibliographic databases of their journal articles. However, a large
number of publications are still available solely on paper, and doc-
ument image analysis tools are essential to support data entry from
printed journal and proceedings [24]. A straightforward application
of OCR technology produces poor results because of the variabil-
ity of the layout structure of printed documents. Form definition, a
function available in many commercial OCR systems, support ex-
traction of text from exactly defined zones, but semantically relevant
document components (e.g., title and authors) are practically never
printed in the very same zone of a page. An error of few millime-
ters in bounding the zone of interest can cause an unrecoverable loss
of information. The complexity of the problem is even more evident
when the data entry is extended to the whole article, which takes
more than one page.

The goal of the WISDOM project undertaken at the University of
Bari is to develop intelligent document processing tools that auto-
matically transform a large variety of printed multi-page documents,
especially periodicals, into a web-accessible form such as XML. This
transformation requires a solution to several image processing prob-
lems, such as the separation of textual from graphical components
in a document image (document analysis), the recognition of the
document (document classification), the identification of semanti-
cally relevant components of the page layout (document understand-
ing), the transformation of portions of the document image into se-
quences of characters (OCR), and thetransformationof the page into
HTML/XML format. A large amount of knowledge is required to ef-
fectively solve these problems. For instance, the segmentation of the
document image can be based on the layout conventions (orlayout
structure) of specific classes of documents, while the separation of

1 Dipartimento di Informatica, Universit`a degli Studi di Bari, Via Orabona 4,
I-70126 Bari, Italy, email:fesposito, malerba, lisig@di.uniba.it

text from graphics requires knowledge on how text blocks can be
discriminated from non-text blocks. In many applications presented
in the literature, a great effort is made to hand-code the necessary
knowledge according to some formalism, such as block grammars
[18]. In the WISDOM project, we investigated the application of var-
ious inductive learning algorithms in order to solve the knowledge
acquisition problem. Some of them are:

� Incremental top-down induction of decision trees. Decision trees
are used to classify basic blocks extracted by the image segmen-
tation algorithm (segmentation and block classification are two
steps of the document analysis process). Incrementality satisfies
an important design requirement, namely online training of the
document processing system. On the other hand, it can raise space
inefficiency problems [8].

� Induction of a set of first-order rules (or logical theory) from a
set of training examples. Rules are used to perform a layout-based
classification and understanding of segmented document images.
Resorting to a first-order representation formalism is unavoidable,
since each page layout consists of a variable number of spatially
distributed components. Obviously, the choice of a suitable set of
attributes and relations is crucial for the success of the applica-
tion. Some experimental results obtained with the learning system
INDUBI/CSL [16] confirmed Connel and Brady’s [5] observation
that both numeric and symbolic descriptions are essential to gen-
erate models of visual objects, since the former increase the sen-
sitivity while the latter increase the stability of the internal repre-
sentation of visual objects.

In this paper, a further issue is investigated in the specific context of
document understanding, namely multiple dependent concept learn-
ing. Actually, learning rules for document understanding is more dif-
ficult than learning rules for document classification, since semanti-
cally relevant layout components (also calledlogical components) re-
fer to a part of the document rather than to the whole document. Log-
ical components may be related to each other, therefore the recogni-
tion of a logical component can be correctly performed only if its
contextis considered. Thus, it would be more appropriate to learn
rules that reflect these dependencies among logical components. For
instance, in the case of papers published in the IEEE Transactions on
Pattern Analysis and Machine Intelligence, the following clause:
author(X) ontop(Y;X); title(X)
captures the typographical convention of printing the authors just un-
der the title. The main benefits in learning, if possible, this kind of
contextual rules are:

� Learnability of correct concept definitions. For instance, some
learning systems that do not take concept dependencies into ac-
count, such as the well-known FOIL [21], cannot learn the defini-



tions of ”appending two lists” and ”reversing a list” independently,
since the former concept is essential to give a reasonably compact
definition of the second concept.

� Rendering explicit some concept dependencies, which would be
otherwise hidden in a set of flat, independent rules. A correct logi-
cal theory structured around a number of dependent concepts does
not contain those redundancies of its equivalent theory with inde-
pendent concepts; therefore it is more comprehensible and easier
to be validated by experts.

In this paper, a new approach to the problem of learning multi-
ple dependent concepts is briefly presented. This approach is that
adopted by ATRE [13], a machine learning system interfaced by
WISDOM++, a document processing system developed in the WIS-
DOM project.2

The paper is organized as follows. Section 2 describes the docu-
ment processing steps performed by WISDOM++. Section 3 show
how ATRE solves some problems related to learning multiple depen-
dent concepts. Section 4 illustrates some experimental results con-
cerning the application of ATRE to the problem of understanding
a set of real-world multi-page documents. Finally, in Section 5 our
conclusions are drawn.

2 THE SYSTEM WISDOM++

A distinguishing feature of WISDOM++ is the use of a knowledge
base in order to support some document processing tasks. The knowl-
edge base is automatically built from a set of training documents
using machine learning tools and techniques, which make the sys-
tem highlyadaptive. WISDOM++ has been designed as a multi-user
system, in the sense that each authorized user has his/her own rule
base. Currently, two categories of users are defined:Administrators
and end users. Administrators can train the system to classify and
understand documents, while end users can only operate by using
the learned rules. Finally, WISDOM++ has been designed to manage
multi-pagedocuments, each of which is asequenceof pages. The
definition of the right sequence is responsibility of the user, since the
optical scan function is able to work on a single page at a time. Pages
of multi-page documents are processed independently of each other
in all steps.

Initially, each page is scanned with a resolution of 300 dpi and
thresholded into a binary image. The bitmap of an A4-sized page
takes2; 496 � 3; 500 = 1; 092; 000 bytes and is stored in TIFF for-
mat. Thedocument analysisprocess includes:

1. Preprocessing, that is the evaluation of the skew angle, the ro-
tation of the document, and the computation of aspread factor,
which is greater than 1.0 in quite simple documents with few
sparse regions, while it is lower than 1.0 in complex documents
with closely written text regions. Details on preprocessing algo-
rithms can be found in [2].

2. Segmentation, that is the identification of rectangularblocksen-
closing content portions. WISDOM++ segments the reduced doc-
ument image into rectangular blocks by means of a variant of the
Run Length Smoothing Algorithm (RLSA) [25], which operates
on a document image with a lower resolution (75 dpi is considered

2 WISDOM++ is a newer version of the system WISDOM (Windows Inter-
face System for DOcument Management), originally written in C [15][8]
and part of an intelligent digital library [10]. WISDOM++ has been de-
signed according to an object-oriented analysis and design methodology
and implemented in Microsoft Visual C++. WISDOM++ can be down-
loaded from the following site: www.di.uniba.it/ malerba/wisdom++.

a reasonable trade-off between the accuracy and the speed of the
segmentation process). The RLSA applies four operators to the
document image: 1) horizontal smoothing with a thresholdCh; 2)
vertical smoothing with a thresholdCv; 3) logical AND of the two
smoothed images; 4) additional horizontal smoothing with another
thresholdCa. The variant implemented by WISDOM++ scans the
image only twice with no additional cost [23] instead of the four
times required by the original algorithm. Another novelty is that
the smoothing parametersCv andCa are adaptively defined on
the basis of the spread factor computed during the preprocessing
step.

3. Blocks classification, which aims at discriminating blocks enclos-
ing text from blocks enclosing graphics (pictures, drawings and
horizontal/vertical lines). In WISDOM++, the classification of
blocks is performed by means of a decision tree automatically
built from a set of training examples (blocks) of the five classes.
The choice of a ”tree-based” method instead of the most common
generalized linear models is due to its inherent flexibility, since
decision trees can handle complicated interactions among features
and give results that can be easily interpreted [1].

4. Layout analysis, that is the perceptual organization process that
aims at detecting structures among blocks. The result is a hier-
archy of abstract representations of the document image, that is
the layout structureof the document. The leaves of the layout tree
(lowest level of the abstraction hierarchy) are blocks returned by
the segmentation algorithm, while the root represents the set of
pages of the whole document. A page may include several lay-
out components, calledframes, which are rectangular areas cor-
responding to groups of blocks. WISDOM++ extracts the layout
structure by means of a knowledge-based, bottom-up approach:
Generic knowledge on typesetting conventions is used in order to
group basic blocks together [9].

While the layout structure associates the content of a document with
a hierarchy of layout objects, such as blocks, frames and pages, the
logical structureof the document associates the content with a hier-
archy oflogical objects, such as sender/receiver of a business letter,
title/authors of a scientific article, and so on. The problem of find-
ing the logical structure of a document can be cast as the problem
of defining amappingfrom the layout structure into the logical one.
In WISDOM++, this mapping is limited to the association of a page
with a document class (document classification) and the association
of page layout components with basic logical components (document
understanding). The mapping is built bymatchingthe document de-
scription against bothmodelsof classes of documents and models of
the logical components of interest for that class. Models are rules ex-
pressed in a first-order logic language, which are automatically built
by applying inductive learning algorithms. A detailed description on
how models for document understanding of the logical components
are represented and automatically built from some training examples
is explained in next section.

WISDOM++ allows the user to set up thetext extractionpro-
cess by selecting the logical components to which an OCR has to
be applied. Finally the system generates anHTML/XML versionof
the original document: It contains both text returned by the OCR
and pictures extracted from the original bitmap and converted into
the GIF format. Text and images are spatially arranged so that the
HTML/XML reconstruction of the document is as faithful as possi-
ble to the original bitmap. Moreover the XML format maintains in-
formation extracted during the document understanding phase, since
the Document Type Definition (DTD) is specialized for each class of



documents in order to represent the specific logical structure.

3 LEARNING MULTIPLE DEPENDENT
CONCEPTS

Experimental results of a previous study on multiple dependent con-
cept learning confirmed that by taking into account concept depen-
dencies it is possible to improve the predictive accuracy for the doc-
ument understanding problem [16]. In that study, the learning sys-
tem INDUBI/CSL had been extended in order to learn multiple de-
pendent concepts provided that the user defines a graph of possible
dependencies among logical components. As planned in a previous
work [1], we have replaced INDUBI/CSL with the multiple concept
learning system ATRE, which is able to autonomously discover such
concept dependencies. A brief description of ATRE is reported be-
low.

3.1 The learning problem

The learning problem solved by ATRE can be formulated as follows:
Given

� a set of conceptsC1; : : : ; Cr to be learned,
� a set of observationsO described in a languageLO,
� a background knowledgeBK described in a languageLBK ,
� a language of hypothesesLH ,
� a generalization model� over the space of hypotheses,
� a user’s preference criterionPC,

Find
a (possibly recursive) logical theoryT for the conceptsC1; : : : ; Cr,
such thatT is complete and consistent with respect toO and satisfies
the preference criterionPC.

ATRE mainly differs from INDUBI/CSL for the learning goal, that
is the induction of recursive logical theories, which is common in the
field of inductive logic programming (ILP) [3]. Further differences
concern the representation languagesLO, LBK andLH , the gener-
alization model�, the interpretation of the preference criterion and
the search strategy in the space of hypotheses. Each of these issues
will be addressed in the following.

As to the representation languages, the basic component is thelit-
eral in the two distinct forms:
f(t1; : : : ; tn) = V alue (simple literal)
f(s1; : : : ; sn) 2 Range (set literal)
wheref andg are function symbols called descriptors,ti’s andsi’s
are terms, andRange is a closed interval of possible values taken by
f . Some examples of literals are the following:color(X1) = red,
height(X1) 2 [1:1::1:2], andontop(X;Y ) = true. The last exam-
ple points out the lack of predicate symbols in the representation lan-
guages adopted by ATRE. Thus, the first-order literalsp(X;Y ) and
:p(X;Y ) will be represented asfp(X;Y ) = true andfp(X;Y ) =
false, respectively, wherefp is the function symbol associated to the
predicatep. Therefore, ATRE can deal withclassical negation,:, but
not with negation by failure, not [12], which is common to most of
ILP systems. Henceforth, for the sake of simplicity, we will adopt the
usual notationp(X;Y ) and:p(X;Y ) instead offp(X;Y ) = true

andfp(X;Y ) = false, respectively.
Thelanguage of observationsLO allow a more efficient and com-

prehensibleobject-centered representationof observations. Indeed,
observations are represented by ground multiple-head clauses [11],
called objects, which have a conjunction of simple literals in the

head. An instance of object taken from the blocks-world is the fol-
lowing:

type(blk1) = lintel ^ type(blk2) = column 

pos(blk1) = hor; pos(blk2) = ver; ontop(blk1; blk2)

which is semantically equivalent to the definite program:

type(blk1) = lintel 

pos(blk1) = hor; pos(blk2) = ver; ontop(blk1; blk2)

type(blk2) = column 

pos(blk1) = hor; pos(blk2) = ver; ontop(blk1; blk2)

Examples are described as pairs< L;OID > whereL is a literal
in the head of the object pointed by the object identifierOID. Ex-
amples can be considered aspositiveor negative, according to the
concept to be learned. For instance< type(blk1) = lintel; O1 > is
a positive example of the concepttype(X) = lintel, a negative ex-
ample of the concepttype(X) = column, and it is neither a positive
nor a negative example of the conceptstable(X) = true.

The language of hypothesesLH is that oflinked, range-restricted
definite clauses [6] with simple and set literals in the body and one
simple literal in the head. An example of recursive theory expressed
in LH is the following:
even(X) zero(X)
odd(X) succ(Y;X); even(Y )
even(X) succ(Y;X); odd(Y )
It states conditions for integer numbers being even or odd, given
the concepts of successor and zero. HereX andY denote variables
consistently to Prolog notation. ATRE is also able to deal with nu-
meric descriptors. More precisely, given ann-ary function symbol,
f(X1; : : : ; Xn), taking on values in a numerical domain, the sys-
tem produces hypotheses with set literalsf(X1; : : : ; Xn) 2 [a::b],
where[a::b] is a numerical interval computed according to the same
information theoretic criterion used in INDUBI/CSL [14].

The language of background knowledgeLBK has the same con-
straints as the language of hypotheses. The representation languages
in ATRE seem not to fit very well the ILP framework, but it is easy
to transform ATRE’s theories into Datalog programs [4] with built-in
predicates. In general, a simple literalf(t1; : : : ; tn) = V alue can be
transformed into an (n+1)-ary predicatef(t1; : : : ; tn; V alue), while
a set literalf(t1; : : : ; tn) 2 Range, whereRange is an interval
[a::b], can be transformed intof(t1; : : : ; tn; Z); Z � a; Z � b. The
relational operators� and� are built-in predicates. Thanks to this
transformation it is possible to extend notions and properties of stan-
dard first-order logic to ATRE definite clauses.

Regardless of the chosen representation language, a key role of the
induction process is the search through a space of hypotheses. Agen-
eralization model� provides a basis for organizing this search space,
since it establishes when a hypothesis covers a positive/negative ex-
ample and when an inductive hypothesis is more general/specific
than another. The generalization model adopted in ATRE is a vari-
ant of Plotkin’srelative generalization[19] [20], namedgeneralized
implication[13].

3.2 The learning strategy

The high-level learning algorithm in ATRE belongs to the family of
sequential covering(or separate-and-conquer) algorithms [17] since
it is based on the strategy of learning one clause at a time (conquer
stage), removing the covered examples (separatestage) and iterating
the process on the remaining examples.



Many FOIL-like algorithms adopt this separate-and-conquer strat-
egy. The most relevant novelties of the learning strategy implemented
in ATRE are embedded in the design of the conquer stage. Indeed, the
conquer stage of our algorithm aims at generating a clause that cov-
ers a specific positive example, theseed, while FOIL does not. Thus
ATRE implements a general-to-specific seed-driven search strategy
in the space of definite clauses.

The search space is actually a forest of as many search-trees
(called specialization hierarchies) as the number of chosen seeds,
where at least one seed per incomplete concept definition is kept (see
Figure 1). Each search-tree is rooted with a unit clause and ordered
by generalized implication. The forest can be processedin parallel
by as many concurrent tasks as the number of search-trees (parallel-
conquer search). Each task traverses the specialization hierarchies
top-down (or general-to-specific), but synchronizes traversal with the
other tasks at each level. Initially, some clauses at depth one in the
forest are examined concurrently. Each task is actually free to adopt
its own search strategy, and to decide which clauses are worth to be
tested. If none of the tested clauses is consistent, clauses at depth
two are considered. Search proceeds towards deeper and deeper lev-
els of the specialization hierarchies until at least one consistent clause
is found. Task synchronization is performed after that all ”relevant”
clauses at the same depth have been examined. A supervisor task de-
cides whether the search should carry on or not on the basis of the
results returned by the concurrent tasks. When the search is stopped,
the supervisor selects the ”best” consistent clause according to the
user’s preference criterionPC. This strategy has the advantage that
simpler consistent clauses are found first, independently of the con-
cepts to be learned. Moreover, the synchronization allows tasks to
save much computational effort when the distribution of consistent
clauses in the levels of the different search-trees is uneven. In Figure
1 it is shown the parallel exploration of the specialization hierarchies
for the concepts ofevenandoddnumbers.

odd(X) ←

odd(X) ←
     succ(Y,X)

odd(X) ←
     succ(X,Y)

odd(X) ←
     succ(Y,X),
     even(Y)

odd(X) ←
     succ(Y,X),
     succ(X,Z)

odd(X) ←succ(Y,X),
                 zero(Y)

even(X) ←

even(X) ←
     succ(Y,X)

even(X) ←
     succ(X,Y)

even(X) ←
     succ(Y,X),
     succ(Z,Y)

even(X) ←
     succ(Y,X),
     succ(Z,Y)

Level 0

Level 1

Level 2

Figure 1. Parallel search for the conceptsevenandodd

This separate-and-parallel-conquersearch strategy provides us
with a solution to the problem ofinterleavingthe induction process
for distinct concept definitions.

The main procedure of ATRE is shown in Figure 2. The input of
the system is a set of objects, a background knowledge, a set of con-
cepts to be learned, and a preference criterion that guides the heuristic
search in the space of possible hypotheses.

The function implemented by the proceduresaturateobjectsis the
saturation of a set of examples given a set of clauses. The first step
towards the generation of inductive hypotheses is the saturation of all
objects with respect to the given BK [22]. In this way, information
that was implicit in the example, given the background knowledge,

is made explicit.
Initially, all positive and negative examples (pairs< L;OID >)

are generated for every concept to be learned, the learned theory is
empty, while the set of concepts to be learned contains allCi. The
conquer stage performs a parallel general-to-specific beam search to
generate a set of consistent, linked and range-restricted clauses for
the concepts to be learned. A seed is associated with each special-
ization hierarchy. Seeds are chosen according to the textual order
in which objects are provided to the system. IfOk is the first object
with an untagged example of conceptCi thenOk is taken to generate
seeds forCi. In particular, all untagged examples ofCi in Ok will
be selected as seeds, so it is possible to have several specialization
hierarchies for each concept.

Ground literals in the body of seed objects are generalized. In par-
ticular, the generalization of a ground literalf(t1; : : : ; tn) = V alue

is obtained by turning distinct constants into distinct variables, and
replacing all occurrences of a constantti with the same variableXi

(simple inverse substitution). Clause specialization is performed ei-
ther by adding a new generalized seed literal that preserves the prop-
erty of linkedness of the clause or by restricting the interval of a set
literal already in the body. When a consistent and range-restricted
clause is found it is put aside: The search is stopped when at least
M consistent, range-restricted clauses are determined. At this point,
the best one is selected according to user’s preference criterion. The
default criterion is the maximization of the number of positive exam-
ples covered, and the minimization of the complexity of the clause
(here represented by the number of literals in the body).

Since the addition of a consistent clause may lead to an aug-
mented, inconsistent theory, the procedureverify global consistence
applies a layering technique to recover the consistency. The selected
clause is used to saturate again the object, so that recursive clauses
could be generated in the next call of the procedureparallel conquer.
Finally, the procedureupdateexamplestags positive examples ex-
plained by the current learned theory, so that they will no longer be
considered for the generation of new clauses.

4 EXPERIMENTAL RESULTS

The proposed approach to multiple concept learning has been ap-
plied to the problem of understanding multi-page printed documents.

procedure learn_recursive_theory(Objects, BK, {C1,...,Cn }, PC)

SatObjects := saturate_objects(Objects, BK)
Examples := generate_pos_and_neg_examples(Objects, {C1,...,Cn })
LearnedTheory := ∅
Concepts := {C1,...,Cn }
repeat

ConsistentClauses := parallel_conquer(Concepts, Examples, PC)
Best := find_best_clause (ConsistentClauses, PC)
ConsistentTheory:=

verify_global_consistence(Best, LearnedTheory, Objects, Examples)
LearnedTheory := ConsistentTheory  ∪ {Clause}
Objects := saturate_objects(SatObjects, LearnedTheory)
Examples := update_examples(LearnedTheory,Examples)
foreach Ci  in Concepts do

if  pos_examples(Ci)= ∅ then
Concepts := Concepts / {Ci}  endif

endforeach
until  Concepts = ∅
return LearnedTheory

Figure 2. Main procedure of the learning algorithm implemented in ATRE



A user/trainer of WISDOM++ is asked to label some layout compo-
nents of a set of training documents according to their logical mean-
ing. Those layout components with no clear logical meaning are not
labeled. Therefore, each document generates as many training exam-
ples as the number of layout components. Classes of training exam-
ples correspond to the distinct logical components to be recognized
in a document. The unlabelled layout objects play the role of coun-
terexamples for all the classes to be learned.

Figure 3. Layout of the first page of a multi-page document (left) and its
partial description in a first-order logic language (right).

Each training example is represented as anobjectin ATRE, where
different constants represent distinct layout components of a page
layout. The description of a document page is reported in Figure 3.
All descriptors used to represent a page layout of a multi-page docu-
ment are listed in Table 1.

Table 1. Page layout descriptors for a multi-page document.

Descriptor name Definition
page(page) Nominal domain:

first, intermediate,
last but one, last

width(block) Integer domain: (1..640)
height(block) Integer domain: (1..875)
x pos centre(block) Integer domain: (1..640)
y pos centre(block) Integer domain: (1..875)
type of(block) Nominal domain:

text, hor line, image,
ver line, graphic, mixed

part of(block1; block2) Boolean domain:
true if block1 containsblock2

on top(block1; block2) Boolean domain:
true if block1 is aboveblock2

to right(block1; block2) Boolean domain:
true if block2 is to the right ofblock1

alignment(block1; block2) Nominal domain:
only left col, only right col,
only middle col, both columns,
only upper row, only lower row,
only middle row, both rows

The following clauses are used as background knowledge, in or-
der to automatically associate information on page order to layout
blocks.

at page(X) = first part of(Y;X); page(Y ) = first

at page(X) = intermediate 

part of(Y;X); page(Y ) = intermediate

at page(X) = last but one 

part of(Y;X); page(Y ) = last but one

at page(X) = last part of(Y;X); page(Y ) = last

Three long papers appeared in the January 1996 issue of the
IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) have been considered. The papers contain thirty-seven
pages, each of which has a variable number of layout compo-
nents (about ten on average). Layout components can be associated
with at most one of the following eleven logical labels:abstract,
affiliation, author, biography, caption, figure, index term,
page number, references, running head, title.

Learning rules for document understanding raises issues concern-
ing the induction of recursive theories. Simple and mutual concept
dependencies have to be handled, since the logical components refer
to a part of the document rather than to the whole document and may
be related to each other. For instance, in case of papers published in
journals, the following dependent clauses:

running head(X) 
top left(X); text(X); even page number(X)

running head(X) 
top right(X); text(X); odd page number(X)

paragraph(Y ) ontop(X;Y ); running head(X); text(Y )

express the fact that a textual layout component at the top left (right)
hand corner of an even (odd) page is a running head, while a textual
layout component below a running-head is a paragraph of the paper.
Moreover, the recursive clause
paragraph(Y ) ontop(X;Y ); paragraph(X); text(Y )
is useful to classify all textual layout components below the upper-
most paragraph. Therefore, document understanding seems to be the
kind of application that may benefit of learning strategies for multiple
predicate learning. By running ATRE on the training set described
above, the following theory is returned:

1. logic type(X) = running head 

y pos centre(X) 2 [18::39]; width(X) 2 [77::544]
2. logic type(X) = page number 

width(X) 2 [2::8]; y pos centre(X) 2 [19::40]
3. logic type(X) = figure 

type of(X) = image; at page(X) = intermediate

4. logic type(X) = figure type of(X) = graphic

5. logic type(X) = abstract 

at page(X) = first; width(X) 2 [487::488]
6. logic type(X) = affiliation 

at page(X) = first; y pos centre(X) 2 [720::745]
7. logic type(X) = caption 

height(X) 2 [9::75]; alignment(Y;X) = only middle col;

logic type(Y ) = figure; type of(X) = text

8. logic type(X) = author  

at page(X) = first; y pos centre(X) 2 [128::158]
9. logic type(X) = references 

height(X) 2 [332::355]; x pos centre(X) 2 [153::435]
10. logic type(X) = title 

at page(X) = first; height(X) 2 [18::53]
11. logic type(X) = biography 

at page(X) = last; height(X) 2 [65::234]
12. logic type(X) = caption 

height(X) 2 [9::75]; on top(Y;X); logic type(Y ) = figure;



type of(X) = text; to right(Z; Y )
13. logic type(X) = index term 

height(X) 2 [8::8]; y pos centre(X) 2 [263::295]
14. logic type(X) = caption 

alignment(X;Y ) = only lower row; height(X) 2 [9::9]
15. logic type(X) = caption 

on top(Y;X); logic type(Y ) = figure;

type of(X) = text; alignment(Y;Z) = only right col

16. logic type(X) = caption 

height(X) 2 [9::75]; on top(X;Y );
logic type(Y ) = figure; type of(X) = text;

type of(Y ) = graphic

17. logic type(X) = caption 

height(X) 2 [9::75]; alignment(Y;X) = only left col;

alignment(Z; Y ) = only left col; logic type(Z) = caption;

width(Z) 2 [467::546]

Clauses are reported in the order in which they are learned. The the-
ory contains some concept dependencies (see clauses 7 and 12) as
well as some kind of recursion (see clause 17). Surprisingly, some
expected concept dependencies were not discovered by the system,
such as that relating the running head to the page number:

logic type(X) = page number 

to right(X;Y ); logic type(Y ) = running head

logic type(X) = page number 

to right(Y;X); logic type(Y ) = running head

The reason is due to the semantics of the descriptorto right, which
is generated by WISDOM++ only when two layout components are
at a maximum distance of 100 points, which is not the case of articles
published on the PAMI transactions. Same consideration applies to
other possible concept dependencies (e.g., title-authors-abstract).

In order to test the predictive accuracy of the learned theory, we
considered the fourth long article published in the same issue of the
transactions used for training. WISDOM++ segmented the fourteen
pages of the article into 169 layout components, sixteen of which
(i.e., less than 10%) could not be properly labeled using by the
learned theory (omission errors). No commission error was observed.
This is important in this application domain, since commission errors
can lead to totally erroneous storing of information. Finally, it is im-
portant to observe that many omission errors are due to near misses.
For instance, the running head of the first page is not recognized
simply because its centroid is located at point 40 along the vertical
axis, while the range ofy pos center values determined by ATRE
in the training phase is[18::39] (see clause 1). Significant recovery of
omission errors can be obtained by relaxing the definition of flexible
matching between definite clauses [7].

5 CONCLUSIONS

This paper illustrates the problem of document image understand-
ing, which is just one of the problems met in paper document pro-
cessing. To carry out the document understanding task, it is neces-
sary to establish models, that is general descriptions of each logical
component to be recognized. These descriptions are expressed in a
first-order logic formalism, such that layout components correspond
to variables, properties are expressed by means of either unary predi-
cates or function symbols, while spatial relations among layout com-
ponents are represented by either predicates or function symbols of
arity n < 1.

Hand-coding models for document understanding has been the
usual approach followed in many applications. Since this is a de-
manding task, we explored the possibility of automatically acquir-
ing them by means of machine learning techniques. Models can be
induced from a set of training documents for which the exact cor-
respondence of layout components to logical labels is known a pri-
ori. The main issue in learning models for document understanding
is concept dependence: mutual relations often occur between logi-
cal components and it would be sensible to learn rules that express
such relations. Discovering concept dependencies is not easy so that
in this work we have presented a solution based on a separate-and-
parallel-conquer search strategy. The proposed strategy has been im-
plemented in ATRE, a learning system that induces logical theories
used by the document processing system WISDOM++ when the doc-
ument understanding task is carried out.

The problem of learning multiple dependent concepts is not spe-
cific of the application to document understanding. It occurs every
time a domain-specific knowledge-base used to solve the more gen-
eral class of scene labeling problems is automatically built from a
set of training examples (labeled scenes). As future work we plan to
investigate the empirical and analytical effects of the computational
strategy presented in this paper to other labeling problems.
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Improving the Accuracy of C4.5 by Feature
Pre-Selection

Petra Perner 1
and Chid Apte 2

Abstract.

Selecting the right set of features for classi�cation is one of

the most important problems in designing a good classi�er.

Decision tree induction algorithms such as C4.5 have incor-

porated in their learning phase an automatic feature selection

strategy while some other statistical classi�cation algorithm

require the feature subset to be selected in a preprocessing

phase. It is well know that correlated and irrelevant features

may degrade the performance of the C4.5 algorithm. In our

study, we evaluated the in
uence of feature pre-selection on

the prediction accuracy of C4.5 using a real-world data set.

We observed that the accuracy of the C4.5 classi�er can be

improved with an appropriate feature pre-selection phase for

the learning algorithm.

1 Introduction

Selecting the right set of features for classi�cation is one of

the most important problems in designing a good classi�er.

Very often we don't know a-priori what the relevant features

are for a particular classi�cation task. One popular approach

to address this issue is to collect as many features as we can

prior to the learning and data modeling phase. However, ir-

relevant or correlated features, if present, may degrade the

performance of the classi�er. In addition, large feature spaces

can sometimes result in overly complex classi�cation models

that may not be easy to interpret.

In the emerging area of data mining applications, users of

data mining tools are faced with the problem of data sets

that are comprised of large numbers of features and instances.

Such kinds of data sets are not easy to handle for mining. The

mining process can be made easier to perform by focussing on

a subset of relevant features while ignoring the other ones. In

the feature subset selection problem, a learning algorithm is

faced with the problem of selecting some subset of features

upon which to focus its attention.

In this paper, we present our study on features subset se-

lection and classi�cation with C4.5 algorithm. In Section 2,

we brie
y describe the criteria used for feature selection and

the feature selection methods. Although, C4.5 has a feature

selection strategy included in its learning performance it has

been observed that this strategy is not optimal. Correlated

and irrelevant attributes may degrade the performance of the

1 Institute of Computer Vision and Applied Computer
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2 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598,
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induced classi�er. Therefore, we use feature subset selection

prior to the learning phase. The CM algorithm selects features

based upon their rank ordered contextual merits [4]. The fea-

ture selection strategy used by C4.5 and the CM algorithm

are reviewed in Section 2. For our experiments, we used a real

data set that includes features extracted from x-ray images

which describe defects in a welding seam. It is usually unclear

in these applications what the right features are. Therefore,

most analyses begin with as many features as one can ex-

tract from the images. This process as well as the images are

described in Section 3.

In Section 4, we describe our results. We show that the

prediction accuracy of the C4.5 classi�er will improve when

provided with a pre-selected feature subset. The results show

that the feature subsets created by CM algorithm and the

feature subset normally extracted by C4.5 have many features

in common. However, the C4.5 selects some features that are

never selected by the CM algorithm. We hypothesize that

irrelevant features are weeded out by the CM feature selection

algorithm while they get selected by the C4.5 algorithm. A

comparison of the feature ranking done by the CM algorithm

with the ranking of the features done by C4.5 for the �rst

10 features used by C4.5 shows that there is a big di�erence.

Finally, our experiments also indicate that model complexity

does not signi�cantly change for the better or worse when

pre-selecting features with CM.

2 Feature Subset Selection Algorithms

According to the quality criteria [8] for feature selection, the

model for feature selection can be distinguished into the �l-

ter model and the wrapper model [1, 7]. The wrapper model

attempts to identify the best feature subset for use with a

particular algorithm, while the �lter approach attempts to

assess the merits of features from the data alone. Although

the wrapper model can potentially produce the best result-

ing classi�er, it does so by doing an exhaustive search over

the entire feature space. Various search strategies have been

developed in order to reduce the computation time [9] for

wrapper algorithms. The �lter approach on the other hand is

a greedy search based approach that is computationally not

as expensive. The feature selection in C4.5 may be viewed as

a �lter approach, while the CM algorithm may be viewed as

a wrapper approach.



2.1 Feature Selection done by Decision
Tree Induction

Determining the relative importance of a feature is one of

the basic tasks during decision tree generation. The most of-

ten used criteria for feature selection is information theoretic

based, such as the Shannon entropy measure I for a data

set. If we subdivide a data set using values of an attribute

as separators, we obtain a number of subsets. For each of

these subsets we can compute the information value. If the

the information value of a subset n is in, then the new infor-

mation value is given by Ii =
P

qnin, where qn is the subset

of data points with attribute value n. Ii will be smaller than

I, and the di�erence (I � Ii) is a measure of how well the

attribute has discriminated between di�erent classes. The at-

tribute that maximizes this di�erence is selected.

The measure can also be viewed as a class separability mea-

sure. The main drawback of the entropy measure is its sensi-

tivity to the number of attributes values [11]. Therefore C4.5

uses the gain ratio. However, this measure su�ers the draw-

back that it may choose attributes with very low information

content of the attribute itself [2].

C4.5 [10] uses a univariate feature selection strategy. At

each level of the tree building process only one attribute, the

attribute with the highest values for the selection criteria, is

picked out of the set of all attributes. Afterwards the sample

set is split into sub-sample sets according to the values of this

attribute and the whole procedure is recursively repeated until

only samples from one class are in the remaining sample set

or until the remaining sample set has no discrimination power

anymore and the tree building process stops.

As we can see feature selection is only done at the root node

over the entire decision space. After this level, the sample set

is split into sub-samples and only the most important feature

in the remaining sub-sample set is selected. Geometrically it

means, the search for good features is only done in orthogonal

decision subspaces ,which might not represent the real distrib-

utions, beginning after the root node. Thus, unlike statistical

feature search strategies [3] this approach is not driven by the

evaluation measure for the combinatorial feature subset; it is

only driven by the best single feature. This might not lead to

an optimal feature subset in terms of classi�cation accuracy.

Decision trees users and researchers have recognized the

impact of applying a full set of features to a decision tree

building process versus applying only a judiciously chosen

subset. It is often the case that the latter produces decision

trees with lower classi�cation errors, particularly when the

subset has been chosen by a domain expert. Our experiments

were intended to evaluate the e�ect of using multivariate fea-

ture selection methods as pre-selection steps to a decision tree

building process.

2.2 Contextual Merit Algorithm

For our experiment, we used the contextual merit (CM) al-

gorithm [4]. This algorithm employs a merit function based

upon weighted distances between examples which takes into

account complete feature correlations to the instance class.

The motivation underlying this approach was to weight fea-

tures based upon how well they discriminate instances that

are close to each other in the Euclidean space and yet belong

to di�erent classes. By focusing upon these nearest instances,

the context of other attributes is automatically taken into

account.

To compute contextual merit, the distance dkrs between val-

ues zkr and zks taken by feature k for examples r and s is used

as a basis. For symbolic features, the inter-example distance

is 0 if zkr = zks, and 1 otherwise. For numerical features,

the inter-example distance is min

�
zkr�zks

tk
; 1

�
, where tk is a

threshold for feature k (usually 1=2 of the magnitude of range

of the feature). The total distance between examples r and s

is Drs =
PNf

k=1
dkrs, and the contextual merit for a feature

f is Mf =
P

N

r=1

P
wf

rsd
f

rs, where N is the total number of

examples, Cr is the set of examples not in the same class

as examples r, and wf

rs is a weight function chosen so that

examples that are close together are given greater in
uence

in determining each features merit. In practice, it has been

observed that 1

D
2
rs

if s is one of k nearest neighbors to r,

and 0 otherwise, provides robust behavior as a weight func-

tion. Additionally, using ln# �C(r) as the value for k has also

exhibited robust behavior. This approach to computing and

ordering features by their merits has been observed to be very

robust, across a wide range of examples.

3 Our Data Set

A detailed description of the data set can be found in [6]. Here

we try to brie
y sketch out how the data set was created and

what kind of features were used.

The subject of this investigation is the in-service inspection

of welds in pipes of austenitic steel. The 
aws to be looked for

in the austenitic welds are longitudinal cracks due to inter-

granular stress corrosion cracking starting from the inner side

of the tube.

The radio-graphs are digitized with a spatial resolution of

70 mm and a gray level resolution of 16 bit per pixel. After-

wards they are stored and decomposed into various Regions

of Interest (ROI) of 50 x 50 pixel size. The essential informa-

tion in the ROIs is described by a set of features which are

calculated from various image-processing methods.

Images of 
aws in welds are radio-graphed by local grey

level discontinuities. Subsequently, the morphological edge

�nding operator, the derivative of Gaussian operator and the

Gaussian weighted image moment vector operators are used

for feature extraction.

The morphological edge detection operator consists of a

combination of morphological operators (i.e. dilation and ero-

sion) which move the gray value edges in an image in di�erent

directions. The di�erence in images dilation(g(p))� g(p) and

g(p)�erosion(g(p)) result in respectively shifted edge-images

(where g(p) is the original image). After a �nal minimum op-

eration on both images, the steepest edges remain in the re-

sulting image as a maximum.

The derivative of Gaussian �lter is based on a combination

of a Gaussian smoothing followed by a partial derivation of

the image in the x� and y� directions. The result of the �lter

is chosen as the maximum of the derivatives.

Another �lter is designed specially for 
aw detection in

radio-graphs of welds. This method uses the vector represen-

tation of the image and calculates the image moment in an

analogous fashion to the model known from mechanics.



A one-dimensional FFT-�lter for crack detection problem is

also employed. This �lter is based on the assumption that the

preferential direction of the crack is positioned in the image

in the horizontal direction. The second assumption is based

upon the empirical observation that the half power width of

a crack indication is smaller than 300mm. The �lter consists

of a column wise FFT high-pass Bessel operation that works

with a cuto� frequency of 2LP=mm. Normally the half-power

width of under-cuts is greater so that this �lter suppresses

them. This means that it is possible to distinguish between

under-cuts and cracks with this FFT-�lter. A row-oriented

low-pass that is applied to the output of this �lter helps to

eliminate noise and to point out the cracks more clearly.

Furthermore, a Wavelet �lter is also used. The scale rep-

resentation of the image after the Wavelet transform makes

it possible to suppress the noise in the image with a sim-

ple threshold operation without losing signi�cant parts of the

content of the image. The noise in the image is an interfer-

ence of �lm and scanner noise and irregularities caused by the

material of the weld.

The features which describe the content of the ROI are

extracted from pro�le plots which run through the ROI per-

pendicular to the weld. In a single pro�le plot, the position

of a local minimum is detected which is surrounded by two

maxima that are as large as possible. This de�nition varies a

little depending on the respective image processing routine. A

template which is adapted to the current pro�le of the signal

allows us to calculate various features. Additionally, the half-

power width and the respective gradients between the local

extrema are calculated. To avoid statistical calculation errors,

the calculation of the template features is averaged over all of

the columns along an ROI.

The methods outlined here lead to 36 parameters being

collected for every ROI. The data set used in this experiment

contains features for ROIs from background, crack and un-

dercut regions. The data set consists of altogether 1924 ROIs

with 1024 extracted from regions of no disturbance, 465 from

regions with cracks and 435 from regions with under-cuts.

4 Results

Table 1 illustrates the error rate for the C4.5 classi�er when

using all features as well as error rates for di�erent feature

subsets. The error rate was estimated using cross-validation.

The improvement in accuracy is two percent for the pruned

case. To interpret this improvement, we use a classi�cation

analysis conducted earlier [5], where performance actually

peaked and then deteriorated as the number of features was

increased. We observe similar behavior in our experiments.

Classi�cation error is at its minimum when the feature sub-

set size is 20. This is in contrast to the feature subset size of

28 that C4.5 selects when presented with the entire feature

set, with no pre-selection.

It may be argued that it is not worth doing feature subset

selection before tree induction since the improvement in pre-

diction accuracy is not so dramatic. However, the importance

of an improvement, however small, clearly depends on the re-

quirements of the application for which the classi�er is being

trained. We further observed (Table 4) that about 67% of the

total features are used similarly by CM and C4.5, while about

33% of the features are exclusively selected by CM, and 16%

Parameters Test=Design Crossvalidation
Unpruned Pruned Unpruned Pruned

All 0.9356 1.6112 24.961 24.545
10 1.5073 3.7942 29.4332 28.7051
15 1.4033 3.0146 26.365 26.4171
20 1.5073 2.5988 23.7649 22.7769
24 0.9356 1.7152 24.493 23.5049
28 0.9875 1.7152 25.117 24.077

Table 1. Error Rate for Di�erent Feature Subsets

are exclusively selected by C4.5.

Error Rate for Different N umber of 
Features 
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Table 2. Error Rates for Di�erent Sizes Feature Sets

Table 3 shows that the tree does not necessarily become

more compact even if a reduced set of features is used. The

tree actually becomes even larger in the case with the best

error rate. We therefore cannot draw any useful conclusion

about feature set size and its relation to model complexity.

Number of Features 10 15 20 24 28 37

Nodes 236 204 178 166 164 161
Edges 237 206 176 137 161 159

Table 3. Number of Nodes and Edges

We also observe (Table 4) that in comparing the two trees

generated by C4.5 with and without CM's pre-selection, the

feature used for splitting at the root node changes.

5 Conclusion

We have studied the in
uence of feature subset selection based

on a �lter and wrapper approach to the performance of C4.5.

Our experiment was motivated by the fact that C4.5 uses a

non-optimal feature search strategy. We used the CM algo-

rithm for feature subset selection which measures importance

of a feature based on a contextual merit function. Our results



Attributes 10 15 20 24 28 C 4.5 Rank Name Number in Tree Name

2 0 0 1 1 1 1 1 4 11 9
3 1 1 1 1 1 1 2 22 21 3
4 1 1 1 1 1 1 3 23 22 27
5 0 0 0 0 0 1 4 3 31 3
6 0 1 1 1 1 1 5 10 32 31
7 0 0 1 1 1 6 24 33 24
8 0 1 1 1 1 0 7 17 34 34
9 1 1 1 1 1 1 8 19 41 37

10 1 1 1 1 1 0 9 9 42 31
11 0 0 0 0 0 1 10 31 43 3
12 0 0 0 1 1 1 11 36 44 10
13 0 0 0 0 0 1 12 35 45 31
14 0 0 0 0 0 1 13 8 46 34
15 0 0 0 0 1 1 14 6 47 2
16 0 0 0 0 0 1 15 34 48 35
17 0 1 1 1 1 0 16 29 51 None
18 0 0 0 0 1 1 17 2 52 None
19 1 1 1 1 1 1 18 27 53 8
20 0 0 0 1 1 0 19 37 54 6
21 0 0 0 0 0 1 20 32 55 None

22 1 1 1 1 1 0 56 None
23 0 1 1 1 1 1 57 None
24 1 1 1 1 1 1 58 None
25 0 0 0 0 0 1 59 9
26 0 0 0 0 0 1 5A 17
27 0 0 1 1 1 1 5B 24
28 0 0 0 1 1 1 5C 27
29 0 1 1 1 1 1 5D None
30 0 0 0 0 1 1 5E None
31 1 1 1 1 1 1 5F 22
32 0 0 1 1 1 1 5G 24

33 0 0 0 0 1 1

34 0 0 1 1 1 1 Table 4 Ranked Feature and the first 10 Features used by
35 1 1 1 1 1 1 Decision Tree
36 1 1 1 1 1 1

37 0 0 1 1 1 1

Number used 10 15 20 24 28 31

show that feature subset selection can help to improve the

prediction accuracy of the induced classi�er. However, it may

not lead to more compact trees and the prediction accuracy

may not increase dramatically.

The main advantage may be that fewer features required for

classi�cation can be important for applications such as image

interpretation where computational costs for extracting the

features may be high and require special purpose hardware.

For such domains, feature pre-selection to prune down the

feature set size may be a bene�cial analysis phase.
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