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Abstract. Recently there has been growing interest both to extend ILP to descrip-

tion logics and to apply it to knowledge discovery in databases. In this paper we

present a novel approach to association rule mining which deals with multiple levels

of description granularity. It relies on the hybrid language AL-log which allows a

uni�ed treatment of both the relational and structural features of data. A generality

order and a downward re�nement operator for AL-log pattern spaces is de�ned on

the basis of query subsumption. This framework has been implemented in SPADA,

an ILP system for mining multi-level association rules from spatial data. As an

illustrative example, we report experimental results obtained by running the new

version of SPADA on geo-referenced census data of Manchester Stockport.

Keywords: inductive logic programming, description logics, spatial data mining

1. Introduction

In its original formulation, Inductive Logic Programming (ILP) is con-

cerned with inducing classi�cation rules from examples and background

knowledge, all of which are expressed as Prolog programs (Nienhuys-

Cheng and de Wolf, 1997). This uniformity of representation is rel-

atively unique within the diverse �eld of machine learning and has

contributed signi�cantly to the identity and coherence of ILP as a �eld

of research. Recently the �eld has witnessed a twofold evolution, both

in the target language and the learning problems.

First, the ILP community is becoming increasingly aware that to-

day's ILP encompasses the application of machine learning methods

to domains with 
exible nested structures (Flach and D�zeroski, 2001).

This explains the growing interest in new target languages. Descrip-

tion Logics (DLs) are particularly interesting because they have been

invented for representing and reasoning with structural knowledge and

concept hierarchies (Baader et al., 2003). They represent a function-free

�rst-order fragment allowing a variable-free syntax, which is considered

to be important for reasons of readability. Deduction in DLs has been

thoroughly investigated. Learning Horn rules also has already reached

a mature state in ILP. But inducing DL descriptions from examples
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has been attacked mostly by heuristic means (Cohen et al., 1992; Co-

hen and Hirsh, 1994; Kietz and Morik, 1994) and very recently in a

formal manner (Badea and Nienhuys-Cheng, 2000). Horn clausal logic

and description logics are incomparable with respect to expressiveness

(Borgida, 1996). Furthermore the former are signi�cantly limited being

unable to model and reason about value restrictions in domains with

a rich hierarchical structure. Thus there have been several attempts at

combining description logics and function-free Horn clausal logic, e.g.

AL-log (Donini et al., 1998) and CARIN (Levy and Rousset, 1998).

Rouveirol and Ventos (2000) have presented a coverage test and a

hypothesis ordering for learning in CARIN-ALN .

Second, many promising applications of ILP to knowledge discovery

in databases (KDD) have emerged in the literature (D�zeroski, 1996;

D�zeroski, 2001). KDD has been de�ned as the non-trivial process of

discovering valid, novel, potentially useful and ultimately understand-

able patterns from data (Fayyad et al., 1996). This new application

area has broadened the range of learning problems of ILP from the

traditional predictive tasks to the new descriptive ones. For instance,

the ILP system WARMR (Dehaspe and Toivonen, 1999) supports the

discovery of frequentDatalog patterns. WARMR adapts Mannila and

Toivonen's levelwise method (1997) to the case of spaces of function-free

conjunctive formulas which are organized according to �-subsumption
(Plotkin, 1970). Furthermore, it adopts the logical setting of learning

from interpretations (De Raedt and D�zeroski, 1994) which De Raedt

and Dehaspe (1997) proved suitable for descriptive data mining and

Blockeel et al. (1999) proved good at scaling up ILP algorithms. Fre-

quent patterns are commonly post-processed into rules that exceed

given threshold values. In the case of association rules, the measures

of support and con�dence o�er a natural way of pruning weak rules

(Agrawal and Srikant, 1994).

Most studies in association rule mining have focused on mining rules

at single concept levels, i.e. either at the primitive level or at a rather

high concept level. Yet many applications would bene�t from concept

hierarchies that are often available as part of the domain knowledge

(Han and Fu, 1999). Due to the evolution in the expressiveness of target

languages mentioned above, we claim that the discovery of multi-level

association rules is one of those data mining problems to which ILP

can supply an elegant solution. In this paper we propose a novel ILP

setting which adopts AL-log as a knowledge representation language.

This setting shows to be suitable for mining multi-level association rules

from multiple relations because it allows a uni�ed treatment of both

the relational and structural features of data. A generality order �B
and a downward re�nement operator �O for AL-log pattern spaces is
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de�ned on the basis of query subsumption. We prove the monotonicity

of �B with respect to the support of AL-log patterns.
This setting has been implemented in SPADA, an ILP system de-

signed and developed for mining multi-level association rules in spatial

databases and applied to geographic data mining (Malerba and Lisi,

2001b). The two-phased discovery of association rules is illustrated by

giving an insight into algorithmic issues. As an illustrative example,

we report experimental results obtained by running the new version of

SPADA on geo-referenced census data of Stockport, one of the ten

metropolitan districts of Greater Manchester, UK. Thus the paper

updates the algorithmic issues of (Malerba and Lisi, 2001b) and the

experimental results of (Malerba and Lisi, 2001a).

The paper is organized as follows. Section 2 introduces the task of

mining multi-level association rules from multiple relations. Section 3

brie
y describes syntax, semantics and reasoning of AL-log adapting

them to represent data and patterns in our context. Section 4 is devoted

to the presentation of the generality order for organizing spaces of

AL-log patterns. Section 5 describes the ILP system SPADA whereas

experimental results on geo-referenced census data are discussed in

Section 6. Concluding remarks are given in Section 7.

2. The Mining Task

Most studies in association rule mining have focused on mining rules

at single concept levels, i.e., either at the primitive level or at a rather

high concept level. Yet concept hierarchies are a valuable kind of do-

main knowledge to be exploited during the pattern discovery for two

main reasons. First, it is more likely to discover interesting rules at low

concept levels than at high ones. For instance, with reference to the

concept hierarchy H1=fMilk<Food, Bread<Food, LowFatMilk<Milk,
ChocoMilk<Milk, WhiteBread<Bread, WheatBread<Breadg1 over food
items in market basket analysis, besides �nding 80% of customers that

purchase Milkmay also purchase Bread, it could be informative to show

that 75% of people buy WheatBread if they buy LowFatMilk. The asso-

ciation in the latter statement, though it occurs less frequently, carries

more speci�c and concrete information than the former. Second, large

support is more likely to exist at high concept levels rather than at low

ones. E.g. suppose that the concept hierarchiesH2=fOuterwear<Clothes,
Shirts<Clothes, Jackets<Outerwear, SkiPants<Outerwearg and

H3=fShoes<Footwear, HikingBoots<Footwearg are available. One

1 The symbol < is to be read as 'sub-concept of'
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can notice that few people buy jackets with hiking boots, but many

people may buy outerwear with hiking boots. Thus the association

involving the intermediate category Outerwear would not be discov-

ered if the search for large itemsets was restricted to the leaf-level of

taxonomies. The need for ad-hoc algorithms has been observed by many

researchers. In (Han and Fu, 1995) a top-down progressive deepening

method for mining multi-level association rules has been developed

by extending the Apriori algorithm (Agrawal and Srikant, 1994) for

mining single-level association rules. A major di�erence between this

and others' proposals, e.g. (Srikant and Agrawal, 1995), is the usage of

di�erent thresholds of support and con�dence for di�erent concept lev-

els. The method �rst �nds large itemsets at the top-most level and then

progressively deepens the mining process towards lower concept levels

under the assumption that only the descendants of frequent itemsets

are worthy being generated.

A more rigorous formulation of the problem of mining multi-level

association rules includes some taxonomic information T = fHkg1�k�m
besides the data set r to be mined. It is noteworthy that each concept

hierarchy Hk in T can arrange its concepts according to its own range

of concept levels. Furthermore, data is typically available at leaf levels.

This makes it hard to generate and evaluate patterns that combine

concepts belonging to di�erent hierarchies. For the sake of uniformity,

we map concepts to levels of description granularity whose number

depends on the data mining problem P at hand.

De�nition 2.1. Let 	 = f1; : : : ;maxGg be the set of levels of de-

scription granularity in P. A granularity assignment is a relation  
over Hk �	 such that 8(C; h); (D; l) 2  : if C < D then h > l.

Concepts marked with multiple granularity levels are simply repli-

cated along the hierarchy they belong to, so that a layering of the

taxonomy at hand is induced. We denote T l the l-th layer, l 2 	, of a
taxonomy T . In Figure 1 a three-layered taxonomy T is illustrated. All

concept hierarchies in T have been rearranged according to the three

problem-de�ned granularity levels. For instance, the concepts Footwear

and HikingShoes in H3 have been assigned to both T 2 and T 3.

A pattern is an expression in some language describing a subset of

data or a model applicable to that subset (Fayyad et al., 1996). Given

a taxonomy T , we denote by Ll the language of patterns involving

concepts in T l. This correspondence between Ll and T l supplies means
for getting both coarser-grained and �ner-grained descriptions than a

given pattern.

De�nition 2.2. Let P 2 Ll. A pattern P 0 2 Lh, h < l (resp. h > l),
is an ancestor (resp. descendant) of P i� it can be obtained from P by
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Figure 1. Assigning description granularity levels to concepts

replacing each concept C that occurs in P with a concept D 2 T h such
that C v D (resp. D v C).

Patterns are evaluated against the data set r. The support s of a

pattern P in r is a percentage expressing the relative frequency of

P in r. It is computed by means of an evaluation function supp whose
de�nition varies according to the chosen representation language. In our

context the de�nition of frequent pattern takes description granularity

levels into account.

De�nition 2.3. Let r be a data set andminsupl the minimum support

threshold for Ll. A pattern P 2 Ll with support s is frequent in r,

denoted as freq(r; P ), if (i) s � minsupl and (ii) all ancestors of P
w.r.t. T are frequent.

Formally, the problem P of discovering frequent patterns at multiple

levels of description granularity can be de�ned as follows.

De�nition 2.4. Given

� a data set r,

� a taxonomy T where a reference concept Ĉ and m task-relevant

concepts Rk, 1 � k � m, are designated,

� a set fLlg1�l�maxG of languages

� a set fminsuplg1�l�maxG of support thresholds

the problem of frequent pattern discovery at l levels of description

granularity, 1 � l � maxG, is to �nd the set F of all P 2 Ll with
freq(r; P ).
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As mentioned above, frequent patterns are post-processed into as-

sociation rules.

De�nition 2.5. Let P;Q 2 Ll be such that P � Q. An association

rule in Ll is an implication of the form Q! (P nQ)(s; c), where s and
c are percentages called the support and the con�dence of the rule.

Given an association rule Q! R (s; c) and a data set r, the support
s is the support of the underlying pattern Q [ R in r whereas the

con�dence c is the probability that the consequent R occurs in r when

the antecedent Q occurs in r.

De�nition 2.6. Let r be a data set and minconf l the minimum

con�dence threshold for Ll. An association rule Q ! R (s; c) in Ll

is highly-con�dent if c � minconf l. Furthermore, it is called strong if

it is highly-con�dent and Q [R is frequent.

Con�dence is also computed by means of supp.

3. Representing Data and Patterns in AL-log

AL-log is a hybrid knowledge representation system which integrates

the description logic ALC (Schmidt-Schauss and Smolka, 1991) and the
deductive database language Datalog (Ceri et al., 1990). Therefore it

embodies two subsystems, called structural and relational, respectively.

A fragment of AL-log is actually used as a language for representing

data and patterns in the context of multi-level association rule mining.

Thus we limit the presentation of AL-log to the features of interest

to this work. Furthermore we assume the reader to be familiar with

Datalog.

3.1. Syntax

The description logic ALC allows for the speci�cation of structural

knowledge in terms of concepts, roles, and individuals. Individuals rep-

resent objects in the domain of interest. Concepts represent classes of

these objects, while roles represent binary relations between concepts.

Complex concepts can be de�ned from primitive concepts and roles

by applying constructors such as u (conjunction), t (disjunction), and

: (negation). E.g., C u D is the concept obtained by conjunction of

the concepts C and D. The fragment of ALC of interest to this work

contains only primitive concepts.

ALC knowledge bases consist of an intensional part and an exten-

sional part. As for the intensional part, concept hierarchies spanned by

is-a relations between concepts are syntactically expressed as inclusion

statements of the form
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C v D (read "C is included in D")

where C and D are two arbitrary concepts. Intuitively, the statement

says that every instance of C is also an instance of D. As for the

extensional part, it is possible to specify instance-of relations between

individuals and concepts. Syntactically, individuals are symbols of an

alphabet O and instance-of relations are expressed as membership as-

sertions, e.g. concept assertions of the form

a : C (read "a belongs to C")

where a 2 O and C is a concept. One such assertion says that a is an

instance of C.
An ALC knowledge base � is formally the pair � = hT ;Mi where T

is a set of inclusion statements andM is a set of membership assertions.

In AL-log the ALC component allows for the de�nition of Datalog
programs enriched with constraints of the form s : C where s is either a
constant or a variable, and C is an ALC-concept. Note that the usage of
concepts as typing constraints applies only to variables and constants

that already appear in the clause. The symbol & separates constraints

from Datalog atoms in a clause.

De�nition 3.1. A constrained Datalog clause is an implication of

the form

�0  �1; : : : ; �m&
1; : : : ; 
n

where m � 0, n � 0, �i are Datalog atoms and 
j are constraints.

From now on, we will denote by head(E) the head, and by body(E)
the body of a constrained Datalog clause E. A constrained Datalog

program � is a set of constrained Datalog clauses.

Formally, an AL-log knowledge base B is de�ned as the pair B =

h�;�i where � is an ALC knowledge base and � is a constrained

Datalog program. For a knowledge base to be acceptable, it must

satisfy the following conditions:

� The set of Datalog predicate symbols appearing in � is disjoint

from the set of concept and role symbols appearing in �.

� The alphabet of constants in � coincides with the alphabet O of

the individuals in �. Furthermore, every constant occurring in �

appears also in �.

� For every clause in �, every variable occurring in the constraint

part occurs also in the Datalog part.
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Note that these properties allow the notion of substitution to be straight-

forwardly extended to constrained Datalog clauses.

Queries to AL-log knowledge bases are special cases of De�nition

3.1, namely they are constrained Datalog clauses without head. Note

that queries are existentially quanti�ed conjunctive formulas.

3.2. Semantics

In ALC concepts are interpreted as subsets of a domain. More precisely,

an interpretation I = (�I ; �I) consists of a set �I (the domain of I)
and a function �I (the interpretation function of I) which maps each

concept to a subset of �I such that equations like (CuD)I = CI\DI ,

(C tD)I = CI [DI , and (:C)I = �I n CI are satis�ed. In order to

assign a precise meaning to membership assertions, the interpretation

function �I is extended to individuals by mapping them to elements of

�I such that aI 6= bI if a 6= b. It is noteworthy that such restriction

ensures that di�erent individuals denote di�erent objects in the domain

of interest (see unique names assumption (Reiter, 1980)).

Models in ALC are de�ned as follows.

De�nition 3.2. An interpretation I satis�es:

� a concept C if CI 6= ;;

� an inclusion statement C v D if CI � DI

� a concept assertion a : C if aI 2 CI

� a knowledge base � = hT ;Mi if it satis�es both T andM.

We say that an ALC knowledge base � logically implies � (denoted
as � j= �), where � is either an inclusion statement or a membership

assertion, if every model of � satis�es �.
By virtue of the unique names assumption, we can impose the fol-

lowing conditions on interpretations (models).

De�nition 3.3. An O-interpretation for an ALC knowledge base � is

an interpretation IO such that O � �I and for each a 2 O : aI = a.
An O-model for � is an O-interpretation that is a model.

Note that O-interpretations (O-models) can be considered the ALC
counterpart of Herbrand interpretations (models). Therefore we focus

on them.

A model-theoretic semantics of AL-log is determined by the inter-

action between the structural and the relational component. We call

�D the set of Datalog clauses obtained from the clauses of � by

deleting their constraints. An interpretation J for anAL-log knowledge
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base B = h�;�i is the union of an O-interpretation IO for � and an

Herbrand interpretation IH for �D.

De�nition 3.4. Let B be an AL-log knowledge base. An interpretation
J = hIO;IHi is a model of B if IO is a model of �, and for each ground

instance ��0&
01; : : : ; 

0
n of each clause ��&
1; : : : ; 
n in �, either there

exists one 
0i, i 2 f1; : : : ; ng, that is not satis�ed by J , or ��0 is satis�ed
by J .

The notion of logical consequence paves the way to the de�nition of

answer set for queries.

De�nition 3.5. An AL-log knowledge base B logically implies:

� a ground atom � (B j= �), if every model of B satis�es �

� a ground constraint 
 (B j= 
), if every model of B satis�es 


� a conjunction of ground atoms and ground constraints

F = �1 ^ : : : ^ �m&
1 ^ : : : ^ 
n (B j= F )

if B j= �i, 8i 2 f1; : : : ;mg, and B j= 
j, 8j 2 f1; : : : ; ng.

Recalling that a query is an existentially quanti�ed conjunction of

atoms and constraints we have:

De�nition 3.6. Let B be an AL-log knowledge base. An answer to the
query Q is a ground substitution � for the variables in Q. The answer
� is correct w.r.t. B if Q� is a logical consequence of B (B j= Q�).
The answer set of Q in B, denoted as answerset(Q;B), contains all the
correct answers to Q w.r.t. B.

Query answering mechanisms are sketched in the following section.

3.3. Reasoning

AL-log, like any knowledge representation system, supports speci�c

kinds of reasoning.

The fundamental deduction to be performed in the structural com-

ponent � of an AL-log knowledge base consists of checking whether

� logically implies an inclusion statement (i.e. � j= C v D) or a

membership assertion (i.e. � j= o : C). The former inference is called
subsumption check, the latter instance check. Since the problem of log-

ical implication can be reformulated as an unsatis�ability problem, we

have that � j= o : C if and only if � [ fo : :Cg is unsatis�able and
� j= C v D if and only if �[fx : Cu:Dg is unsatis�able (where x is a
variable not appearing in �). The technique proposed in (Donini et al.,

1998) for the general problem of checking the satis�ability of an ALC
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knowledge base � = hT ;Mi starts with the tableau branch S = T [M
and adds assertions to S by means of propagation rules such as

� S !t S [ fs : Dg if

1. s : C1 t C2 is in S,

2. D = C1 and D = C2,

3. neither s : C1 nor s : C2 is in S

� S !v S [ fs : C
0 tDg if

1. C v D is in S,

2. s appears in S,

3. C 0 is the NNF concept equivalent to :C

4. s : :C tD is not in S

� S !? fs : ?g if

1. s : A and s : :A are in S, or

2. s : :> is in S,

3. s : ? is not in S

to be applied according to a certain strategy of calculus until either

a contradiction is generated or an interpretation satisfying S can be

easily obtained from it. It has been proved in (Donini et al., 1998) that

whatever choice of application (respecting the strategy) is made, the

calculus terminates. In particular, it returns a complete and clash-free

tableau branch (i.e. it terminates with a tableau branch that does not

does not contain assertions of the form s : ?) if and only if the initial

tableau was satis�able. This provides operational means for proving

the satis�ability of an ALC knowledge base. E.g., coming back to the

instance check problem, � j= o : C if and only if the completion of

� [ fo : :Cg contains a clash. Analogously, as for the subsumption

check problem, � j= C v D if and only if the completion of � [ fx :

C u :Dg (where x is a variable not appearing in �) contains a clash.

Both reasoning problems are relevant for this paper. Query answering

in AL-log itself requires instance checks to be done as illustrated later

on. Also subsumption checks are required by inference mechanisms that

will be presented in Section 4.

The main reasoning service for AL-log knowledge bases is hybrid

deduction which is based on constrained SLD-resolution.
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De�nition 3.7. Let Q be a query �1; : : : ; �m &
1; : : : ; 
n, E a con-

strained Datalog clause �0  �1; : : : ; �m&�1; : : : ; �h, and � the most
general substitution such that �0� = �j� where �j 2 f�1; : : : ; �mg. The
resolvent of Q and E with substitution � is the query Q0 having:

� (�1; : : : ; �j�1; �1; : : : ; �m; �j+1; : : : ; �m)� as Datalog part

� 
01; : : : ; 

0
k as constraints obtained from 
1�; : : : ; 
n�; �1; : : : ; �h by

applying the following simpli�cations: couples of constraints t : C,
t : D are replaced by the equivalent constraint t : C uD.

The one-to-one mapping between constrained SLD-derivations and

the SLD-derivations obtained by ignoring the constraints can be ex-

ploited to extend known results for Datalog to AL-log. Note that in
AL-log a derivation of the empty clause with associated constraints

does not represent a refutation. It actually infers that the query is

true in those models of B that satisfy its constraints. This is due

to the open-world assumption according to which an ALC knowledge

base (in particular, the assertional part) represents possibly in�nitely

many interpretations, namely its models. Therefore, in order to an-

swer a query, it is necessary to collect enough derivations ending with

a constrained empty clause such that every model of B satis�es the

constraints associated with the �nal query of at least one derivation.

De�nition 3.8. Let B be an AL-log knowledge base and Q(0) the

query �1; : : : ; �m&
1; : : : ; 
n to B. A constrained SLD-refutation for

Q(0) in B is a �nite set fd1; : : : ; dmg of constrained SLD-derivations for

Q(0) in B such that the following conditions hold:

1. for each derivation di, i 2 f1; : : : ;mg, the last query Q
(ni) of di is

a constrained empty clause;

2. for every model J of B, there exists at least one derivation di,
i 2 f1; : : : ;mg, such that J j= Q(ni).

The notion of constrained SLD-refutation is used for query answer-

ing in AL-log. It is a complete and sound method for answering ground
queries (Donini et al., 1998).

De�nition 3.9. Let B be an AL-log knowledge base. An answer �
to a query Q is called a computed answer if there exists a constrained

SLD-refutation for Q� in B (denoted as B ` Q�). The set of computed
answers is called the success set of Q in B.

Lemma 3.1. Let Q be a ground query to an AL-log knowledge base

B. It holds that B ` Q if and only if B j= Q.
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Actually, given any query Q, the success set of Q in B coincides with
the answer set to Q in B (Donini et al., 1998). Indeed, it is straightfor-

ward to see that the usual reasoning methods for Datalog allow us to

collect in a �nite number of steps enough constrained SLD-derivations

for Q in B to construct a refutation - if any. In particular, derivations

must satisfy both conditions of De�nition 3.8. Checking the former is

trivial. Conversely, the latter is veri�ed i�, for every set of assertions

a1 : C1; : : : ; am : Cm such that ai : Ci appears as a constraint in Q
(ni),

� [ fa1 : :C1; : : : ; am : :Cmg is unsatis�able. Solving this problem

requires performing at most km unsatis�ability checks on �, where k is
the maximum number of constraints in each Q(ni) and m is the number

of constrained SLD-derivations constituting the refutation.

3.4. Our AL-log framework

The main feature of our AL-log framework for frequent pattern discov-

ery is the extension of the unique names assumption from the semantic

level to the syntactic one. Note that the unique names assumption holds

naturally for ground constrained Datalog clauses because the seman-

tics of AL-log adopts Herbrand models for the Datalog part and

O-models for the constraint part. Indeed in AL-log di�erent constants
denote distinct objects of the domain. Conversely the unique names

assumption is not guaranteed in the case of non-ground constrained

Datalog clauses, e.g. di�erent variables can be uni�ed. We propose

to impose the bias of Object Identity (Semeraro et al., 1998) on the

AL-log framework.
[Object Identity] In a formula, terms denoted with di�erent symbols

must be distinct, i.e. they represent di�erent entities of the domain.

This bias can be the starting point for the de�nition of either an

equational theory or a quasi-ordering for constrainedDatalog clauses.

The latter option has been deeply investigated in (Lisi et al., 2002) for

the case of Datalog queries and shows to be more suitable for the

purposes of this work. It relies on a restricted form of substitution

whose bindings avoid the identi�cation of terms:

De�nition 3.10. A substitution � is an OI-substitution w.r.t. a set of

terms T i� 8t1; t2 2 T : t1 6= t2 yields that t1� 6= t2�.

From now on, we will assume substitutions to be OI-compliant.

Carrying on the presentation of our AL-log framework, data is rep-
resented as an AL-log knowledge base (assuming the restrictions on

the ALC component mentioned in Section 3.1).

Example 3.1. As an illustrative example throughout the paper we

consider a knowledge base representing spatial data of the Province

of Bari, Italy. Concepts of interest to this example are LargeTown,
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Inducing Multi-level Association Rules from Multiple Relations 13

Road, and Water. The intensional part of � contains concept hierarchies

rooted in Road and Water:

MotorWayvRoad
MainTrunkRoadvRoad
RegionalRoadvRoad

SeavWater
RivervWater
LakevWater

The extensional part of � contains 11 concept assertions for LargeTown

(e.g. bari:LargeTown), and several assertions for the sub-concepts of

Road and Water, e.g.:

a14:MotorWay.

ss16:MainTrunkRoad.

adriatico:Sea.

The relational subsystem � contains Datalog facts such as

adjacent to(bari,adriatico).

intersects(bari,a14).

intersects(bari,ss16).

that represent spatial relations between large towns and either roads

or water bodies. The intensional part of � is not available for this

example. �

Patterns are to be intended as unary conjunctive queries whose

answer set contains individuals of the ALC concept Ĉ of reference.

We have called them O-queries.

De�nition 3.11. Given a key constraint 
̂ = X : Ĉ, an O-query Q to

an AL-log knowledge base B is a constrained Datalog clause of the

form

Q = q(X) �1; : : : ; �m&X : Ĉ; 
2; : : : ; 
n

where X is the distinguished variable and the remaining variables oc-

curring in the body of Q are the existential variables.

From now on we denote by key(Q) the key constraint X : Ĉ of an

O-query Q. A trivial O-query is a constrained empty clause of the form
q(X) &X : Ĉ.

Patterns are generated starting from a set A of atom templates,

a key constraint 
̂, and an additional set � of constraint templates.

An atom template � speci�es name and arity of the predicate and
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14 Francesca A. Lisi and Donato Malerba

mode of its arguments. An instantiation of � is a Datalog atom with

predicate and arguments that ful�ll the requirements speci�ed in �.
Constraint templates specify the concept name for concept assertions.

In particular, by restricting � to constraints derived from T l (thus
denoted �l), we de�ne the language Ll. Note that, by de�nition of O-
queries, patterns are connected (or range-restricted). To be well-formed

patterns must be also linked. Note that connectedness and linkedness

have been originally de�ned for de�nite clauses (Helft, 1987) but can be

straightforwardly extended to constrainedDatalog clauses, then toO-
queries. These conditions of well-formedness guarantee the correctness

of query answering, as well known in the �elds of logic programming

and databases.

Example 3.2. Following Example 3.1, suppose that we are interested

in descriptions at two di�erent granularity levels having LargeTown

as reference concept, and Road and Water as task-relevant concepts.

Let A=fintersects( , ), adjacent to( , )g, 
̂ be the key constraint
built on LargeTown, and �1 and �2 the sets of constraints derived

from the two taxonomy layers T 1=fRoad, Waterg and T 2=fMotorWay,
MainTrunkRoad, RegionalRoad, Sea, River, Lakeg, respectively. The
trivial O-query

Q0=q(X) & X:LargeTown

is valid for both L1 and L2. The following O-queries belong to L1:

Q1=q(X) intersects(X,Y)

& X:LargeTown, Y:Road

Q2=q(X) intersects(X,Y), intersects(X,Z)

& X:LargeTown, Y:Road, Z:Road

Q3=q(X) intersects(X,Y), adjacent to(X,Z)

& X:LargeTown, Y:Road, Z:Water

The following O-queries belong to L2:

Q4=q(X) intersects(X,Y)

& X:LargeTown, Y:Motorway

Q5=q(X) intersects(X,Y), intersects(X,Z)

& X:LargeTown, Y:Motorway, Z:MainTrunkRoad

Q6=q(X) intersects(X,Y), adjacent to(X,Z)

& X:LargeTown, Y:Motorway, Z:Sea

Note that Q1, Q2 and Q3 are ancestors of Q4, Q5 and Q6 respectively.

�

The evaluation of a pattern Q is based on the computation of an-

swers to Q w.r.t. an AL-log knowledge base B. This requires the fol-
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Inducing Multi-level Association Rules from Multiple Relations 15

lowing extension of the notions of correct answer and computed answer

to the case of O-queries:

De�nition 3.12. Let B be an AL-log knowledge base. An answer to

the O-query Q is a ground substitution � for the distinguished variable
of Q. The answer � is correct w.r.t. B if there exists at least one correct

answer to body(Q)� w.r.t. B. The answer set of Q in B, denoted as

answerset(Q;B), contains all the correct answers to Q w.r.t. B.

De�nition 3.13. Let B be an AL-log knowledge base. An answer �
to an O-query Q is called a computed answer if there exists at least

one computed answer to body(Q)� w.r.t. B. The success set of Q in B
contains all the computed answers to Q w.r.t. B.

Note that body(Q)� is itself a conjunctive query whose answers

can be computed by means of constrained SLD-refutation. Therefore

Lemma 3.1 and its consequences can be extended to O-queries.
An example of query answering for O-queries is illustrated in the

following.

Example 3.3. Let us consider the AL-log knowledge base B reported

in Example 3.1 and the O-queries reported in Example 3.2. We want to

compute a correct answer to Q1 w.r.t. B. Let us try with � = fX=barig.
For � to be a correct answer to Q1 w.r.t. B, we need to �nd at least

one correct answer to

Q(0) =  body(Q1)� =
=  intersects(bari,Y) & bari:LargeTown, Y:Road

w.r.t. B. Several refutations can be constructed for Q(0). One of them

consists of the following single constrained SLD-derivation.

Let E(1) be intersects(bari,a14). A resolvent for Q(0) and E(1)

with substitution �(1)=fY/ a14g is the constrained empty clause

Q(1) =  & bari:LargeTown, a14:Road.

What we need to check now is that �[fbari:LargeTown, a14:Roadg
is satis�able. This check amounts to two unsatis�ability checks to be

performed by applying the tableau calculus sketched in Section 3.3.

The �rst unsatis�ability check operates on the initial tableau S(0) =

� [ fbari::LargeTowng. The application of the propagation rule!?

to S(0) produces the tableau S(1) = fbari:?g. Computation stops here
because no other rule can be applied to S(1). Since S(1) is complete and

contains a clash, the initial tableau S(0) is unsatis�able.

The second unsatis�ability check operates on the initial tableau S0(0)

= � [ fa14::Roadg. The only propagation rule applicable to S0(0)

is !v with respect to the assertion MotorWayvRoad. It produces the
tableau S0(1) = � [ fa14::Road, a14::MotorWaytRoadg. By applying
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16 Francesca A. Lisi and Donato Malerba

!t to S0(1) with respect to the concept Road we obtain S0(2) = �

[ fa14::Road, a14:Roadg which presents an evident contradiction.

Indeed the application of !? to S0(2) produces the �nal tableau S0(3)

= fa14:?g, thus proving the unsatis�ability of S0(0).
These two results together prove the satis�ability of �[fbari:LargeTown,

a14:Roadg, then the correcteness of �=fY/ a14g as an answer to body(Q1)�
w.r.t. B. Thus we can say that � = fX/barig is a correct answer to Q1

w.r.t. B.
Note that � is also a correct answer to both Q0 and Q4 w.r.t. B.

In particular, refutations for Q0 boil down to checking the implication

� j=bari:LargeTown whereas the refutation for Q4 with substitution

�(1) checks the unsatis�ability of � [ fa14::MotorWayg instead of �

[ fa14::Roadg. More precisely, in the case of Q4, the propagation rule

!? can be applied to the initial tableau at the �rst step of calculus.

This turns out into a shorter and simpler proof of satis�ability. �

The support of a pattern is de�ned as the ratio between the number

of individuals in Ĉ that satisfy the pattern and the total number of

individuals in Ĉ.

De�nition 3.14. Let B be an AL-log knowledge base, P 2 Ll. The
support of P with respect to B is de�ned:

supp(P;B) =
j answerset (P;B) j

j answerset( bP ;B) j

where bP is the trivial O-query q(X) &X : Ĉ for Ll.

Example 3.4. Let us consider the AL-log knowledge base B reported

in 3.1 and the O-queries reported in Example 3.2. In Example 3.3 we

have shown the detailed computation of a correct answer to Q0, Q1 and

Q4. Analogously all other correct answers can be obtained. We have

that answerset(Q0;B) contains 11 answers (as many as the number of

individuals for the concept LargeTown), answerset(Q1;B) contains 11
answers as well (since the conditions in the body of Q1 are not strong

enough to �lter the individuals of LargeTown) and answerset(Q4;B)
contains 6 answers. Therefore, supp(Q1;B) = 100% and supp(Q4;B) =
54:5%. �

4. Searching AL-log Pattern Spaces

In the levelwise method, the space of patterns is searched one level at

a time, starting from the most general patterns and iterating between

candidate generation and candidate evaluation phases (Mannila and

Toivonen, 1997). Since patterns are represented as O-queries, we intend
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to characterize the test of generality between two patterns as a query

containment (or subsumption) problem. Given the schema of a database

and two queries Q1 and Q2, we say that Q1 is contained in (or is

subsumed by) Q2 if in every possible state of the database the answer

set of Q1 is contained in the answer set of Q2.

In contrast to subsumption of concepts, subsumption of conjunctive

queries has not been extensively studied. In (Levy and Rousset, 1998)

it is treated as a special case of existential entailment. Conversely,

Donini et al. do not face the problem. The de�nition of a subsumption

relation for O-queries can not disregard the nature of O-queries as a
special case of constrained Datalog clauses as well as the availability

of an AL-log knowledge base with respect to which these O-queries are
to be evaluated. Generalized subsumption (Buntine, 1988) has been

introduced in ILP as a generality order for Horn clauses with respect to

background knowledge. We propose to adapt generalized subsumption

to the AL-log framework as follows.

De�nition 4.1. Let Q be an O-query, � a ground atom, and J an

interpretation. We say that Q covers � under J if there is a ground

substitution � for Q (Q� is ground) such that body(Q)� is true under

J and head(Q)� = �.

De�nition 4.2. Let P andQ be two O-queries to anAL-log knowledge
base B. We say that P B-subsumes Q if for every model J of B and

every ground atom � such that Q covers � under J , we have that P
covers � under J .

We can de�ne a generality relation �B between O-queries on the

basis of B-subsumption.

De�nition 4.3. Let P andQ be two O-queries to anAL-log knowledge
base B. We say that P is at least as general as Q under B-subsumption,
P �B Q, i� P B-subsumes Q. Furthermore, P is more general than Q
under B-subsumption, P �B Q, i� P �B Q and Q �B P . Finally, P
is equivalent to Q under B-subsumption, P �B Q, i� P �B Q and

Q �B P .

The de�nition of B-subsumption can be proved equivalent to another
formulation, which turns out to be more convenient as an operational

means for checking B-subsumption.

Lemma 4.1. Let P and Q be two O-queries to an AL-log knowledge
base B and � a Skolem substitution for Q with respect to fPg [B. We

say that P �B Q i� there exists a ground substitution � for P such

that (i) head(P )� = head(Q)� and (ii) B [ body(Q)� j= body(P )�.

Theorem 4.1. Let P and Q be two O-queries to an AL-log knowledge
base B and � a Skolem substitution for Q with respect to fPg [B. We

MACH1839(final).tex; 22/12/2003; 12:41; p.17



18 Francesca A. Lisi and Donato Malerba

say that P �B Q i� there exists a substitution � for P such that

(i) head(P )� = head(Q) and (ii) B [ body(Q)� ` body(P )�� where

body(P )�� is ground.

Proof. By Lemma 4.1, we have P �B Q i� there exists a ground substi-

tution �0 for P , such that head(P )�0 = head(Q)� and B [ body(Q)� j=
body(P )�0. Since � is a Skolem substitution, we can de�ne a substitution

� such that P�� = P�0 and none of the Skolem constants of � occurs

in �. Then head(P )� = head(Q) and B[body(Q)� j= body(P )��. Since
body(P )�� is ground, by Lemma 3.1 we have B[body(Q)� ` body(P )��,
so the thesis follows.

Note that condition (i) of Theorem 4.1 is guaranteed in the case

of O-queries belonging to the same language L. Therefore the test of
B-subsumption boils down to query answering.

Example 4.1. With reference to Example 3.2 we want to check whether

Q1 �B Q4 holds. Let � = fX/a; Y/bg a Skolem substitution for Q4

with respect to B [ fQ1g and � the identity substitution for Q1. The

condition (i) is immediately veri�ed. It remains to verify that (ii) B [
fintersects(a,b)&a:LargeTown; b:MotorWayg j= intersects(a,b)

& a:LargeTown, b:Road. We try to build a constrained SLD-refutation

for

Q(0) =  intersects(a,b) & a:LargeTown, b:Road

in B0 = B [ fintersects(a,b)&a:LargeTown; b:MotorWayg.
Let E(1) be intersects(a,b). A resolvent for Q(0) and E(1) with

the empty substitution �(1) is the constrained empty clause

Q(1) =  & a:LargeTown, b:Road

What we need to check is that �0 [ fa:LargeTown, b:Roadg is satis�-
able. This check amounts to two unsatis�ability checks to be performed

by applying the tableau calculus analogously to Example 3.3.

Having proved the satis�ability of �0 [ fa:LargeTown, b:Roadg, we
have proved the existence of a constrained SLD-refutation forQ(0) in B0.
Therefore we can say that Q1 �B Q4. It is easy to check that Q4 6�B Q1.

Analogously we can prove the existence of relations of B-subsumption
between the O-queries listed in Example 3.2. In particular, Q1 �B Q2

but Q2 6�B Q1 due to the object identity bias. �

It can be easily proven that �B is a quasi-order for O-queries.
Furthermore �B is monotonic w.r.t. the evaluation function supp.

Lemma 4.2. Let Q be an O-query to an AL-log knowledge base B. If
� 2 answerset(Q;B) then, for every model J of B, Q covers head(Q)�
under J .

MACH1839(final).tex; 22/12/2003; 12:41; p.18



Inducing Multi-level Association Rules from Multiple Relations 19

Proposition 4.1. Let P and Q be two O-queries to an AL-log knowl-
edge base B. If P �B Q then supp(P;B) � supp(Q;B).

Proof. Let � 2 answerset(Q;B). By Lemma 4.2, for every model J of B,
Q covers head(Q)� under J . Note that P �B Q. By Theorem 4.1, there

exists a substitution 
 for P such that head(P )
 = head(Q). By De�-

nition 4.2, it holds that � 2 answerset (P
;B). Since answerset(Q;B) �
answerset(P
;B) and 
 simply renames the distinguished variable of

P , the thesis follows from De�nition 3.14.

To sum up, the results obtained in this section say that, given a

language L of O-queries, (L;�B) is a quasi-ordered set. Therefore it

can be searched by re�nement operators.

De�nition 4.4. (Nienhuys-Cheng and deWolf, 1997) In a quasi-ordered

set (L;�), a downward (resp. upward) re�nement operator is a mapping
� (resp. Æ) from L to 2L such that 8P 2 L �(P ) � fQ 2 L j P � Qg
(resp. Æ(P ) � fQ 2 L j Q � Pg).

From Proposition 4.1, it follows that downward re�nement operators

are of greater help in the context of frequent pattern discovery. Indeed,

they drive the search towards patterns with decreasing support and

enable the early detection of infrequent patterns. Furthermore we are

interested in downward re�nement operators for searching multiple pat-

tern spaces, each of which corresponds to a di�erent level of description

granularity within the same discovery task.

De�nition 4.5. Let P 2 Ll. The (downward) AL-log re�nement

operator �O is de�ned by the following re�nement rules:

hLiti Add an instantiation of an atom from A and instantiations of

related constraints from �l to body(P ).

h8Ci Replace each constraint 
j = X : C in body(P ), except for

key(P ), with a constraint 
0j 2 �l+1 such that 
0j = X : D and

D v C.

The rule hLiti helps moving within the pattern space Ll (intra-space
search) whereas the rule h8Ci helps moving from Ll to Ll+1 (inter-space

search). Both rules are intuitively correct. Given any P 2 Ll, they
act only on body(P ). Thus condition (i) of Theorem 4.1 are satis�ed.

Furthermore, it is straightforward to notice that the application of �O
to P reduces the number of models of P in both cases. In particular,

as for h8Ci, this intuition follows from De�nition 3.2. So condition (ii)

also is ful�lled.

From now on, we call k-patterns those patterns that have been

generated by applying hLiti k times to the trivial O-query in Ll. Also
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Figure 2. Portion of space searched by �O.

we assume that minsupl � minsupl�1, l > 1, as usual in multi-level

association rule mining (Han and Fu, 1999). Two pruning conditions

for a multi-level search space can be derived from Proposition 4.1.

Corollary 4.1. Given anAL-log knowledge base B, a k-pattern P in Ll

is infrequent if it is subsumed by either (i) an infrequent (k�1)-pattern
in Ll or (ii) an infrequent k-pattern in Ll�1.

Condition (i) requires to test the containment in queries at the same

description granularity level (intra-space subsumption checks) whereas

condition (ii) demands for testing the containment in coarser-grained

queries (inter-space subsumption checks). Because of De�nition 2.3 the

former are to be tested for each level l, while the latter only for l > 1.

Example 4.2. Let us consider the portion of space encompassing the

O-queries listed in Example 3.2. Note that Q0 �B Q1, Q0 �B Q4,

Q1 �B Q2, Q1 �B Q3, Q1 �B Q4, Q4 �B Q5, Q4 �B Q6, Q2 �B Q5,

and Q3 �B Q6. In Figure 2, edges indicate the direction of search

according to the re�nement operator �O. For instance the query Q4

can be obtained by applying either hLiti to Q0 or h8Ci to Q1. Suppose

now that Q4 is a frequent pattern. It is re�ned into Q5 by means of

hLiti. If Q2 was infrequent, Q5 should be pruned according to Corollary

4.1(ii). �

5. The ILP system SPADA

The AL-log framework and the subsequent ILP setting have been

implemented in SPADA, a system designed and developed for min-

ing multi-level association rules in spatial databases and applied to
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geographic knowledge discovery (Malerba and Lisi, 2001b). Actually

SPADA could tackle problems of multi-level association rule mining in

any structured domain, i.e. any domain characterized by the presence of

objects, properties of objects and relations between objects. We have

focused our attention on the spatial domain because it stresses the

potential of our approach from the application side.

A spatial database is a database system that o�ers spatial data

types in its data model and query language and supports them in

its implementation, providing at least spatial indexing and eÆcient

algorithms for spatial join (G�uting, 1994). Thus spatial databases sup-

ply an adequate representation of both single objects and spatially

related collections of objects. In particular, the abstraction primitives

for spatial objects are point, line and region. Among the operations

de�ned over spatial objects, spatial relationships are the most impor-

tant because they make it possible, e.g., to ask for all objects in a given

relationship with a query object. The explicit location and/or extension

of spatial objects also de�ne implicit relations of spatial neighborhood

that make knowledge discovery in spatial databases more diÆcult than

in relational databases (Ester et al., 2000). This applies to both the

eÆciency of algorithms and the complexity of patterns.

With reference to De�nition 2.4, the purpose of discovering spatial

patterns is to detect associations between reference objects (individuals

of the reference concept Ĉ) and task-relevant objects (individuals of the
m task-relevant concepts Rk, 1 � k � m) in a given spatial database

(the data set r). The former are the main subject of the description.

The latter are relevant for the task at hand and spatially related to

the former. It is noteworthy that specifying these objects enables the

application of an Apriori-like algorithm. Indeed, task-relevant objects

are like landmarks. They break the continuity of space and de�ne

"transactions" around reference objects. In geographic knowledge dis-

covery, spatial objects are geographical objects modeled in vectorized

maps available in Geographical Information Systems (GIS), each Rk

is typically a map layer and the taxonomy T is a collection of spatial

hierarchies to be exploited to get geographic descriptions at di�erent

granularity levels. Note that spatial hierarchies capture is-a relations

among geographical objects. A spatial pattern is a pattern P that con-

tains at least one atom representing a spatial relationship. Extending

De�nition 2.5, a spatial association rule is an association rule that

can be derived from two patterns P and Q where either P or Q is

spatial. An example of association rule mining in geographic data is the

discovery of associations between large towns (Ĉ) and spatial objects

taken from the layers of road network (R1), hydrography (R2) and
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administrative boundaries (R3) in the Province of Bari, Italy (Malerba

and Lisi, 2001b).

The connection of SPADA to spatial databases is made possible

by a middle-layer module for feature extraction which selects data of

interest and transforms them into groundDatalog facts. In particular,

map features can be either properties of spatial objects or relations

that hold between spatial objects, and are extracted according to a

prede�ned semantics (e.g. the 9-intersection model for topological rela-

tions (Egenhofer and Herring, 1994)). Furthermore, numerical features

with a large domain need to be discretized. This is currently done by

applying our implementation of the relative unsupervised discretization

algorithm RUDE (Ludl and Widmer, 2000).

5.1. The main features of SPADA

SPADA has been developed in Sicstus Prolog and adopts Datalog as

a language for representing data and patterns.2

The main procedure of SPADA is reported in Algorithm 1. It imple-

ments a depth-bounded breadth-�rst search strategy. For each granu-

larity level l (up to a user-de�ned maximum level maxG) and depth

level k (up to a user-de�ned maximum depth maxD), the system

discovers frequent association patterns by alternating candidate gener-

ation (procedure generateCandidates()) and candidate evaluation (pro-

cedure evaluateCandidates()). On demand, it turns them into strong

association rules (procedure generateStrongRules()). Details of these

procedures are given in Sections 5.2 and 5.3.

As for computational complexity, SPADA does not escape the no-

torious trade-o� between expressiveness and eÆciency in �rst-order

representations (D�zeroski, 1996). Related to eÆciency is scalability.

Studies on learnability theory have shown that current ILP algorithms

would scale relatively well as the number of examples or facts in the

background knowledge increases. However, they would not scale well

with the number of arguments of the predicates (relations) involved,

and in some cases with the complexity of the patterns being searched.

Thus the use of declarative bias is usually suggested to improve scal-

ability (De Raedt and Dehaspe, 1997; Weber, 1999). SPADA exploits

the available background knowledge, notably the concept hierarchies of

T , and relies on a language bias speci�cation to constrain the search

for patterns, e.g. by setting the key constraint 
̂. Although the atoms

in A are listed, the constraints in �l are derived from T according to

the language bias directives.

2 Reserved atoms (e.g., is a=2 for concept assertions and 6= for object-identity)

and program-de�ned mechanisms implement our AL-log framework.
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mineMultiLevelAssociations(B, maxG, maxD,fLl;minsup
l
;minconf

lg1�l�maxG)

1. F  ;;
2. R ;;
3. l 1;

4. while l � maxG do

5. Il  ;;
6. k 1;

7. Clk  fgenerateTrivialPattern(L
l)g;

8. F lk  ;;

9. Rl

k  ;;

10. while k � maxD and Clk 6= ; do

11. F lk  evaluateCandidates(B, Clk, I
l, minsup

l);

12. F  F [ F lk;
13. if patterns2rules = yes then

14. Rl

k  generateStrongRules(F lk, minconf
l);

15. R  R[Rl

k;

16. endif

17. k  k + 1;

18. Clk  generateCandidates(F lk�1, L
l, Il);

19. endwhile

20. l l + 1;

21. endwhile

return F , R

Algorithm 1. Main procedure of SPADA

5.2. From data to patterns

In SPADA each search stage generates, then evaluates patterns. For a

given l the candidate generation phase builds the set Clk of candidate

k-patterns starting from the set F lk�1 of frequent (k � 1)-patterns and

the language Ll by taking the set I l of infrequent patterns into ac-

count. Candidate generation consists of a re�nement step followed by a

pruning step. The former applies one of the two rules of �O to patterns

previously found frequent by preserving the properties of linkedness and

safety. The pruning step allows some infrequent patterns to be detected

and discarded prior to evaluation. Note that the pruning conditions

of Corollary 4.1 require a high number of subsumption checks to be

performed. This makes candidate generation computationally expen-

sive. So, we propose an implementation of the re�nement operator �O
which uses a graph of backward pointers to be updated while search-

ing in order to keep track of both intra-space and inter-space search

stages. Figure 3 gives an example of such graph for the portion of

space reported in Figure 2. Here nodes, dotted edges and dashed edges
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Figure 3. Graph of intra-space and inter-space backward pointers.

represent patterns, intra-space parenthood and inter-space parenthood,

respectively.

Algorithm 2 reports candidate generation in SPADA. It consists

of two computation branches. The former concerns the case of search

in L1. It applies either hLiti (procedure intraRe�ne()), performs the

pruning step (procedure prune()) and inserts an intra-space backward

pointer for each retained candidate (procedure setIntraSpaceEdge()).

Note that, since the fragment of AL-log of interest to us can be reduced
to the aforementioned extended Datalog, the rule hLiti boils down to
adding literals to the body of queries.

The other branch in Algorithm 2 concerns the case of search at

levels of �ner description granularity. One can expect that it is enough

to simply replace the procedure intraRe�ne() with a procedure inter-

Re�ne() which implements the re�nement rule h8Ci. But things are

more complicated. Let us suppose that the current space to be searched

is Ll, l > 1. On one side, searching Ll with only hLiti implies to restart
from scratch. Rather we would like to capitalize on the computational

e�ort made when searching Ll�1 and minimize the number of inter-

space subsumption checks. On the other side, searching Ll indirectly,
i.e. by applying h8Ci to O-queries found frequent in Ll�1, implies the
loss of the useful information that could be collected if Ll was searched
directly. E.g., when generating Clk, l; k > 1, it happens that intraR-

e�ne(F lk�1)� interRe�ne(F l�1k ). This means that a blind application of

h8Ci causes an increment of intra-space subsumption checks.

It is necessary to �nd a compromise between these two apparently

irreconcilable solutions. Our solution requires that Clk, l; k > 1, is
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Procedure generateCandidates(F lk�1, L
l, var Il)

1. Clk  ;;
2. if l = 1 then

/* search in L1 */

3. foreach pattern P in F lk�1 do

4. Q intraRe�ne(P , Ll);

5. Q prune(Q, Il);
6. foreach pattern Q in Q do

/* set the intra-space edge from Q to P */

7. setIntraSpaceEdge(Q, P )

8. endforeach

9. Clk  C
l

k [ Q
10. endforeach

11. else

/* search in Ll, l > 1*/

12. foreach pattern P in F lk�1 do

13. P
0  getInterSpaceParent(P );

14. Q0  getIntraSpaceChildren(P 0);

15. foreach pattern Q
0 in Q0 do

16. Q interRe�ne(Q0);

17. Q prune(Q, Il);
18. foreach pattern Q in Q do

/* set the inter-space edge from Q to Q
0 */

19. setInterSpaceEdge(Q, Q0);

/* set the intra-space edge from Q to P

20. setIntraSpaceEdge(Q, P );

21. endforeach

22. Clk  C
l

k [Q
23. endforeach

24. endforeach

return Clk

Algorithm 2. Candidate generation in SPADA

computed taking both F lk�1 and F
l�1
k into account. In particular, the

expansion of a node P in F lk�1 is done as follows:

� retrieve the inter-space parent node P 0 of P by following the inter-

space backward pointer (step (13));

� retrieve the set Q0 � F l�1k of intra-space children nodes of P 0

by navigating intra-space backward pointers in reverse sense (step

(14));

� generate the set Q of O-queries obtained by applying h8Ci to each
Q0 in Q0 (step (16))
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This not only avoids a blind application of the re�nement rule h8Ci
but also lightens the computational load during the pruning step.

Example 5.1. With reference to Example 4.2, note that the re�nement

of Q4 into Q5 via hLiti is performed by applying h8Ci to Q2. We

emphasize that the inter-space backward pointer from Q4 to Q1 enables

the access to search stages of success in L1. This assures that Q2 does

not produce a certainly infrequent pattern because of Corollary 4.1(ii).

�

Candidate evaluation also bene�ts from backward pointers. They

link any candidate Q to the frequent pattern P from which Q has

been derived by applying the re�nement operator. We remind that

P �B Q, namely a relation of query containment holds between P
and Q. In database practice, P is usually a view (i.e. a query whose

answers are precomputed, stored and maintained up-to-date) and the

relation answerset(Q;B) � answerset(P;B) is exploited to speed up

query evaluation by �ltering the answers of P instead of computing the

answers of Q from scratch. We store the answerset of frequent patterns

and use backward pointers to access this data quickly. Furthermore

the evaluation of constraints that would trigger the deductive engine of

AL-log on the structural subsystem has been eÆciently implemented

as saturation of T l againstM to be performed at the beginning of each

search stage.

5.3. From patterns to association rules

For given l and k, the procedure generateStrongRules() takes the set F lk
of frequent patterns as input and returns the set Rl

k of strong associa-

tion rules (see Algorithm 3). In particular, given a frequent pattern P ,
the procedure generateAntecedents() outputs antecedents suitable for

rules being derived from P and the procedure combine() is responsible

for using these antecedents to build rules according to De�nition 2.5.

It is noteworthy that the generation of "good" rule antecedents is

crucial. A na��ve implementation of the procedure generateAntecedents()

would consist of a combinatorial computation step followed by a prun-

ing step. The former would output combinations of atoms occurring in

P while the latter would discard those that are not well-formed. Back-

ward pointers can be also exploited to speed up the generation of asso-

ciation rules instead. In SPADA the procedure generateAntecedents()

recursively retrieves the predecessors of a frequent pattern. Only those

yielding to strong rules are considered. This eliminates the need for

evaluating rules a posteriori.
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Procedure generateStrongRules(F lk, minconf
l)

1. Rl

k  ;;

2. foreach pattern P in F lk do
3. Q generateAntecedents(P );

4. foreach pattern Q in Q do

5. if getSupport(P )/getSupport(Q)�minconf
l then

6. QE  combine(P , Q);

7. else QE  ;

8. Rl

k  R
l

k [QE
9. endforeach

10.endforeach

return Rl

k

Algorithm 3. Rule generation in SPADA

Example 5.2. Adapting the semantics of query extensions for asso-

ciation rules (Dehaspe and Toivonen, 1999) to our AL-log framework,

the following association rule having Q4 as antecedent:

intersects(X,Y) & X:LargeTown, Y:Motorway 

adjacent to(X,Z) & Z:Sea

can be generated from Q6. It is strong with support 36.36% and con-

�dence 66.7%. Remember from Example 3.4 that the query Q4 is

frequent with support 54.5%. �

5.4. Related work

The closest work to ours is WARMR (Dehaspe and Toivonen, 1999).

But although it has been presented as a system able to use is-a hierar-

chies, WARMR is not a system for mining multi-level association rules

because it lacks of mechanisms for dealing properly with structural

knowledge. E.g., with reference to the problem in Example 3.1 and

assuming that L is de�ned with the following Wrmode speci�cation3:

flargeTown(-o), intersects(+o,-r), is a(+r,road), is a(+r,motorway),

: : :, adjacent to(+o,-w), is a(+w,water), is a(+w,sea), : : :g

Warmr can discover patterns such as the following Datalog queries

Q1 and Q2

?- largeTown(A), intersects(A,B), is a(B,road)

?- largeTown(A), intersects(A,B), is a(B,motorway)

3 These are directives for the candidate generation phase. Here the signs + and -

stand for input and output variable, respectively. See (Dehaspe and Toivonen, 1999)

for further details.
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Intuitively, looking at the concepts involved in the two queries, we can

say that Q1 is more general than Q2 but �-subsumption is not strong

enough to catch this generality relation. It would be necessary to adopt

a semantic generality relation instead of a syntactic one. A drawback

of this is the inability of Warmr to perform any form of taxonomic

reasoning. E.g., it generates the following Datalog queries

?- largeTown(A), intersects(A,B), is a(B,road)

?- largeTown(A), intersects(A,B), is a(B,road), is a(B,motorway)

by simply adding is a atoms from L without detecting semantic re-

dundancies. Furthermore, WARMR di�ers from SPADA as concerns

the transformation of frequent patterns into association rules. In order

to limit the number of possible rules, WARMR expects that the user

provide a list of possible patterns that can occur in the antecedent

or conseguent of a rule. This is done via the language bias directive

classes. More speci�cally, given a frequent pattern P , if there are

subsets Q and R such that Q � P is listed in classes and R = P nQ,
then WARMR generates the rules Q ! R and R ! Q. FARMER

(Nijssen and Kok, 2001) is a faster version of WARMR. Here patterns

are formulated as unary conjunctive queries in the form of rules as

done in this paper and the search does not use �-subsumption but

manipulates a tree data structure to generate the queries which are

de�ned by the language bias. Also FARMER does not support any

form of taxonomic reasoning.

The work presented in (Rouveirol and Ventos, 2000) is the �rst

attempt at learning in hybrid languages. In particular, the chosen lan-

guage is Carin-ALN . Algorithms for testing example coverage and

subsumption between two hypotheses in the logical setting of discrim-

inant induction from interpretations are proposed. They are based

on the existential entailment algorithm studied in (Levy and Rousset,

1998). Unfortunately, no implementation is available yet for the method

of Rouveirol and Ventos, so we could not compare it with SPADA.

The problem of mining multi-level association rules in geographic

data has been originally formulated and solved in (Koperski and Han,

1995). Koperski and Han propose a method that has been obtained by

adapting (Han and Fu, 1995) to spatial data mining and implemented

in the module GeoAssociator of GeoMiner (Han et al., 1997). When

applied to geographic data, SPADA can be considered an upgrade of

GeoAssociator to �rst-order logic. To the best of our knowledge, very

few ILP applications to geographic data mining have been reported in

the literature. GwiM (Popelinski, 1998) can solve several geographic

data mining tasks, though no insight into the algorithmic issues has

been provided. INGENS (Malerba et al., 2001) is an inductive geo-
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graphic information system with learning capabilities which currently

support classi�cation tasks in topographic map interpretation.

6. An application to geo-referenced census data

In some works on spatial representation from the social scientist's

perspective, socio-economic phenomena have been conceptualized as

spatial objects in the sense of entities having both spatial location and

spatially independent attribute characteristics (Martin, 1999). Popu-

lation data is among the potentially spatial socio-economic data: it is

usually geo-referenced with respect to areal spatial objects such as cen-

sus zones, electoral constituencies, local government areas, or regular

grid squares. In the UK, for instance, the geo-referencing areal units

are ED (enumeration district), Ward, District, and County. They form

a hierarchy based on the inside relationship among locations. Thus

the ED is the smallest unit for which census data is now published.

Furthermore, the digital ED boundaries produced for the 1991 UK

census enable the spatial representation of census data in the com-

puter databases. Generally speaking, population censuses of the 1990s

provided an added impetus to the application of GIS to socioeconomic

uses. One of the most interesting topic areas for identifying poten-

tial users of such GIS applications is the public debate over Unitary

Development Plans (UDP) in the UK. The district chosen for investi-

gation is Stockport, one of the ten Metropolitan Districts of Greater

Manchester, UK. It is divided into twenty-two wards for a total of

589 EDs. In particular, census data is extremely important for policy

analysis and, once geo-referenced and conceptualized as spatial objects

with numerical aspatial properties, supply a good test-bed to SPADA.

The study of the Stockport district is expected to show the poten-

tial bene�t of data mining methods and techniques to one or more

potential users, in particular urban planners who are used to analyze

jointly socioeconomic data and topographic maps. Indeed population

and economic census data overlapped to geographic data can be the key

indicator of 'optimum' locations for public services, thus supporting a

good public policy. For instance, population census data such as car

availability and topographic maps such as public transport networks

are core ingredients in studies of accessibility of public services. This

has been the practice in urban planning environments for centuries.

Nowadays it can be supported by powerful computer tools such as

spatial data mining systems.

Data available for this application encompasses 1991 census data in

text format (89 tables, each with 120 attributes on average) and map
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Figure 4. An is-a hierarchy for the Stockport ED layer.

layers in vector format (including digital ED boundaries). This data

has been loaded into an Oracle SpatialTM database, i.e. an object-

relational DBMS extended with spatial data handling facilities. The

ED code allows the joining of the two kinds of data and the generation

of test data. Census data is available only at the ED level and is all

numeric (in fact, integer-valued).

6.1. A study of commuting habits

Studying commuting habits of the population of a certain area is one

of the main preliminary activities in transportation planning. Let us

suppose that some decision-making process about the motor-way M63

is ongoing. Describing the area of Stockport served by the M63 (i.e.

the wards of Brinnington, Cheadle, Edgeley, Heaton Mersey, South

Reddish) may be of support to the planners. In this section we report

the results obtained by applying SPADA to the task of discovering

multi-level spatial association rules having EDs intersected by the M63

as reference objects (individuals of the concept M63ED) and all EDs in

the area served by the M63 as task-relevant objects (individuals of the

concept M63AreaED). The latter are to be characterized with respect to

data about commuting. We call B1 the AL-log knowledge base for this
task.

6.1.1. The knowledge base

The structural component of B1 expresses a concept hierarchy for the

Stockport ED layer which has been obtained by grouping EDs on

the basis of the ward they belong to. In Figure 4, both inclusion

statements and membership assertions are graphically represented. E.g.

the ED with code fa01 is one of the EDs in the ward of Bredbury

(fa01:BredburyED) and the EDs in the ward of Bredbury are EDs

(BredburyEDvED). Further concept hierarchies could be derived by

resorting to clustering algorithms.

The relational component of B1 contains both census and geographic
data. In particular, the census attributes that we have selected for this
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Table I. Census attributes in the experiment on Stockport commuting habits .

Attribute Description Cut points in the attribute domain

s820161 Persons who work out of the dis-

trict of usual residence and drive

to work

0.0, 6.25, 8.333, 12.973, 17.241,

19.048, 20.943, 23.529, 25.0,

25.926, 27.586, 29.032, 29.865,

31.25, 33.333, 34.375, 36.182,

38.235, 40.0, 42.105, 45.455,

46.667, 48.194, 50.0, 51.515,

52.632, 54.167, 56.0, 57.143,

58.333, 58.824, 60.0, 60.714,

61.538, 63.889, 65.217, 66.667,

67.742, 69.565, 71.429, 72.902,

100.0

s820213 Employees and self-employed

who reside in households with 3

or more cars and drive to work

0.0, 2.222, 15.385, 28.0, 29.521,

31.034, 33.333, 35.068, 37.5,

38.095, 38.889, 41.043, 42.857,

48.387, 72.727

s820221 Employees and self-employed

who reside in households with 3

or more cars and work out of the

district of usual residence

0.0, 2.222, 4.762, 9.091, 10.345,

13.636, 18.182, 19.355, 21.131,

23.529, 25.0, 28.571

experiment (see Table I) refer to residents aged 16 and over, thus they

have been normalized with respect to the total number of residents aged

16 and over (i.e. the attribute s820001). Each couple of consecutive cut

points a and b has generated an interval of the kind [a::b]. Geographic
data concerns the relations of intersection between EDs and motorways

(intersect) and adjacency between EDs (adjacent to) that have

been extracted from the database by means of spatial computation.

On the contrary the relations of accessibility and closeness have been

intensionally de�ned by means of spatial qualitative reasoning:

linked to(X,Y) intersect(X,m63),intersect(Y,m63)

& X:M63AreaED, Y:M63AreaED

close to(X,Y) adjacent to(X,Z), adjacent to(Z,Y)

starting from the computed relations.

6.1.2. The declarative bias

To complete the problem statement, we speci�ed a declarative bias

both to constrain the search space and to �lter out some uninteresting

spatial association rules. In particular, we asked for rules containing

only the predicates linked to and close to. This way, we ruled out
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Table II. Quantitative results of the experiment on Stockport commut-

ing habits.

Phase I Phase II

l k No. Patterns Time No. Rules Time Total Time

1 2 3/3 11.92 3/3 0.33 12.25

3 6/108 6/6

4 12/210 30/30

5 27/710 36/36

6 45/1089 153/153

2 2 3/3 (3) 9.94 3/3 2.42 12.36

3 16/18 (120) 16/16

4 41/54 (572) 85/85

5 165/279 (2876) 304/304

6 426/569 (11203) 1226/1226

all the computed spatial relations and focused on the ones derived by

spatial qualitative reasoning. As to the inclusion of census attributes,

we restricted our attention on some intervals for each attribute.

6.1.3. Analysis of results

SPADA has been run on B1 with thresholdsminsup
1 = 0:7 andminconf1 =

0:9 at the �rst level, and minsup2 = 0:5 and minconf2 = 0:8 at the

second level. The whole discovery process has taken 24.61 sec on a PC

Pentium III with 128 Mb RAM (21.86 sec for level 1, and 2.75 sec for

level 2). It has returned 744 frequent patterns out of 3767 candidate

patterns and 1862 strong rules out of 1862 generated rules. Table II

reports quantitative results of this experiment level by level (l) and

step by step (k) both for frequent pattern discovery (Phase I) and rule

generation (Phase II). Each couple of slash-separated �gures indicate

the ratio between the number of frequent patterns (resp. strong rules)

and the number of candidate patterns (resp. candidate rules). The

�gure in round brackets is the number of candidate patterns gener-

ated in a previous experiment on the same data (Malerba and Lisi,

2001a). The fact that the number of candidate patterns at the second

level of description granularity has lost one order of magnitude while

the number of frequent patterns has remained unchanged ensures the

correctness of our approach.

Some interesting patterns have been discovered. For instance, at

level l = 2 of description granularity, the following candidate Q:
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q(X) close to(X,Y), linked to(X,Z), s820161(Z,[52.632..54.167]),

& X:M63ED, Y:SouthReddishED, Z:CheadleED

has been generated after k = 6 re�nement steps and evaluated with

respect to B1. The pattern is a large one with 60% support and says

that "60% of EDs intersected by the M63 are close to a South Reddish

ED and are linked via the M63 to a Cheadle ED where 52-54% residents

aged 16 and over work out of the district of usual residence and drive

to work".

For the sake of clarity, we emphasize that Q has been actually

obtained from the following pattern P at level l = 1:

q(X) close to(X,Y), linked to(X,Z), s820161(Z,[52.632..54.167]),

& X:M63ED, Y:M63AreaED, Z:M63AreaED

by means of the re�nement rule h8Ci. It is straightforward to notice

that P is coarser-grained than Q. Indeed it is supported by 90% of EDs

intersected by the M63 and says that "90% of EDs intersected by the

M63 are close to an ED served by the M63 and are linked via M63 to

another ED in the same area where 52-54% residents aged 16 and over

work out of the district of usual residence and drive to work".

One of the strong rules that have been derived from Q is:

close to(X,Y) & X:M63ED, Y:SouthReddishED 

linked to(X,Z), s820161(Z,[52.632..54.167]) & Z:CheadleED

with 60% support and 100% con�dence. It says that "IF an ED in-

tersected by the M63 is close to a South Reddish ED THEN WITH

CONFIDENCE 100% it is linked via the M63 to a Cheadle ED where

52-54% residents aged 16 and over work out of the district of usual

residence and drive to work".

Note that this rule would have not been discovered if we had limited

the search to L1. Indeed the corresponding rule at the �rst level of

description granularity does not exceed minconf1. Other examples of
strong rules at the second level are:

close to(X,Y), s820221(Y,[10.345..13.636]) & X:M63ED 

linked to(X,Z) & Z:BrinningtonED (60%; 86%)

"IF an ED intersected by the M63 is close to an ED where 10-13%

residents aged 16 and over are employees and self-employed who reside

in house-holds with 3 or more cars and work out of the district of usual

residence THEN WITH CONFIDENCE 86% it is linked via the M63

to a Brinnington ED distinct from the previous one".

close to(X,Y), s820221(Y,[19.355..21.131]) & X:M63ED 

& Y:HeatonMerseyED (70%; 100%)
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"IF an ED intersected by the M63 is close to an ED where 19-21%

residents aged 16 and over are employees and self-employed who reside

in households with 3 or more cars and work out of the district of usual

residence THEN WITH CONFIDENCE 100% the latter ED belongs

to the ward of Heaton Mersey".

A na��ve interpretation of results in this experiment might lead the

experts to state that, among Stockport EDs that are served by the

motorway M63, those that are characterized by a high percentage of car

commuters more urgently need some improvement of the road network.

6.2. A study of accessibility of health care services

In this section we present an application of SPADA to a case study of

urban accessibility of health care services. Once again the area under

analysis is Stockport. In particular, we study the access to Stepping

Hill, where a big hospital is located. We have chosen this case study

for two reasons. First, it relies heavily on the aforementioned joint

analysis of census and geographic data. Second, it is interesting from

the twofold perspective of transportation planning and health care

planning. Indeed, accessibility of health care services is an issue for

both planning activities (Gatrell and Senior, 1999). Many di�erent

de�nitions of accessibility and many ways to measure it can be found in

the literature. In this work, we are concerned with urban accessibility,

which refers to local (inner city) daily transport opportunities. A great

e�ort has been made to de�ne urban accessibility indices, which can be

used to assess/compare transportation facilities within di�erent regions

of an urban area or between urban regions (Bhat et al., 2000). In this

study, we are interested in the urban accessibility "to" the Stepping

Hill Hospital "from" the actual residence of people living within the

area served by the hospital. Since (micro) data on the actual residence

of each involved household are not available, we study the accessibility

at the ED level. Moreover, our study does not aim to synthesize a new

accessibility index, but to discover human interpretable patterns that

can also contribute to directing resources for facility improvement in

areas with poor transport accessibility.

In this section, we present the results obtained by applying SPADA

to the task of mining association rules having EDs within a distance

of 10 Km from the hospital (RefED) as reference objects, and EDs in

the area of Stepping Hill (SteppingHillED) as task-relevant objects.

This area has been de�ned as the one covering �ve EDs, three of which

belong to the ward of Great Moor (GreatMoorED), one to the ward of

Davenport (DavenportED) and the �fth one to the ward of Hazel Grove

(HazelGroveED). The goal is to understand which reference EDs have
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Figure 5. An is-a hierarchy for the Stockport transport network layer.

access to the task-relevant EDs. We call B2 the AL-log knowledge base
for this experiment.

6.2.1. The knowledge base

The structural component of B2 encompasses two concept hierarchies,

one for the ED layer (see Figure 4 restricted to the Stepping Hill area)

and the other one for the transport network layer (see Figure 5). Both

hierarchies have depth three and are straightforwardly mapped into

three granularity levels.

The relational component of B2 contains facts expressing the ex-

istence of topological relations between EDs and objects of the map

layers of roads, railways and bus priority lines, e.g.

external touches to(ed 03bsfq29, bus priority line 1).

crosses(ed 03bsfc13, road 12245).

along(ed 03bsfg25, rail 2453).

The �rst fact states that the relation external touches to holds be-

tween the ED with identi�er ed 03bsfq29 and the bus priority line

identi�ed by bus priority line 1. The other two facts are to be in-

terpreted analogously. Besides these geographic data, census data is

used to de�ne the accessibility of the Stepping Hill area. Indeed, even

though some roads connect a reference ED X with a task-relevant ED

Y , people living in X might have problems reaching Y because they

do not drive. This means that sociological data available in the census

data tables can be pro�tably used to give an improved de�nition of ac-

cessibility. We selected four attributes on the percentage of households

with zero, one, two, and three or more cars, we discretized them with

RUDE and generated the following four binary predicates for SPADA:

no car, one car, two cars, three more cars. The �rst argument of

the predicate refers to an ED, while the second argument is an interval

returned by RUDE.

Despite the availability of geographic and census data, the resulting

knowledge base does not provide a satisfactory de�nition of accessibility
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yet. Indeed, we are interested in relationships between EDs, such as

those stating that two EDs are 'connected' by the same bus priority

line or the same road or the same railway. To solve this problem we

added rules such as:

crossed by bus line(X)

 external touches to(X,bus priority line 1)

connected by bus line(X,Y)

 crossed by bus line(X), crossed by bus line(Y)

crossed by road(X,Z) crosses(X,Z) & Z:Road

connected by road(X,Y)

 crossed by road(X,Z), crossed by road(Y,Z)

crossed by rail(X,Z) along(X,Z) & Z:Rail

connected by rail(X,Y)

 crossed by rail(X,Z), crossed by rail(Y,Z)

to �. They supply an intensional de�nition of connectivity limited to

the cases of direct accessibility of an ED from another ED by means

of only one road or railway or bus line. To express more complex cases

of accessibility, we added intensional de�nitions of can reach by road,

can reach by rail, can reach by bus, can reach by rail bus, and

can reach by public transport on the accessibility by means of pub-

lic transport. Also we provided the de�nition of can reach only by road

to account for accessibility by means of roads alone.

6.2.2. The declarative bias

To complete the problem statement we speci�ed a declarative bias

both to constrain the search space and to �lter out some uninteresting

spatial association rules. In particular, we asked for rules contain-

ing only the following predicates: can reach by public transport,

can reach only by road, no car, one car, two cars, and three more cars.

In this way, we ruled out all spatial relations - both the ones com-

puted and the ones derived by spatial qualitative reasoning - that

helped de�ning the most interesting ones, namely the accessibility by

public transport and the accessibility only by roads. Moreover, the

speci�cation of the following �lter:

pattern constraint([no car( , ), one car( , ), two cars( , ),

three more cars( , )], 1).

prevents the generation of association rules with purely spatial pat-

terns, that is, patterns showing only spatial relations between spatial

objects. Purely spatial patterns are indeed of no interest to the expert in
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transport planning, since it is very likely that they convey no additional

information to what he/she already knows.

6.2.3. Analysis of results

After some tuning of the minimum thresholds of support and con�-

dence for each granularity level, we decided to run the system with

the following parameter values: minsup1 = 0:2 and minconf1 = 0:5
for the level 1, minsup2 = 0:1 and minconf2 = 0:4 for the level 2,

and minsup3 = 0:1 and minconf3 = 0:3 for the level 3. Despite the

declarative bias, SPADA generated 944 rules in 88 secs from a set of

39,830 extracted or inferred facts. More precisely, the system generated

28 rules in 38 secs at granularity level 1, 215 rules in 17 secs at level 2,

and 701 rules in 33 secs at level 3. Two of the rules returned by SPADA

at the �rst level are the following:

can reach only by road(A,B) & A:RefED, B:SteppingHillED

 no car(A,[0.228..0.653]) (38:15%; 56:31%)
can reach by public transport(A,B) & A:RefED, B:SteppingHillED

 no car(A,[0.228..0.653]) (21:71%; 61:11%)

The spatial pattern of the �rst rule occurs in �fty-eight distinct EDs.

This means that from �fty-eight distinct EDs within a distance of

10Km from Stepping Hill Hospital, it is possible to reach the hospital

only by road and the percentage of households with no car is quite

high (between 22.8% and 65.3%). Moreover, if from an ED A around

Stepping Hill Hospital it is possible to reach one of the �ve task-relevant

EDs only by road, then the con�dence that A has a high percentage of

households with no car is 56.31%. The spatial pattern of the second rule

occurs in thirty-three distinct EDs. This means that from thirty-three

reference EDs whose percentage of households with no car is quite high

it is possible to reach the area of the Stepping Hill Hospital by public

transport. The con�dence in the second rule is a little higher than the

�rst association rule. At granularity level 2, SPADA specializes the

concept SteppingHillED considered at level 1. The �rst association

rule above is specialized as follows:

can reach only by road(A,B) & A:RefED, B:GreatMoorED

 no car(A,[0.228..0.653]) (38:15%; 56:31%)
can reach only by road(A,B) & A:RefED, B:DavenportED

 no car(A,[0.228..0.653]) (21:71%; 50:76%)
can reach only by road(A,B) & A:RefED, B:HazelGroveED

 no car(A,[0.228..0.653]) (21:71%; 50:76%)

As expected, the support of some rules has decreased. However, since

both support and con�dence are greater than the corresponding user-

de�ned thresholds, all the three rules are output by SPADA. Similar
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considerations apply to granularity level 3, where speci�c task relevant

EDs are reported.

Association rules found by SPADA in this application can be of

interest to urban planners, since they relate data on the transport

network with data on sociological factors. However, this study has

three main limitations due to the nature of available data. First, we

considered 1991 Census data, which are now obsolete. Second, the

crossing of a railway does not necessarily mean that there is a station

in an ED. Similar considerations can be made for bus priority lines

and roads. Third, digital maps made available by the Ordnance Survey

are devised for cartographic reproduction purposes and not for data

analysis. Hence, a road may appear to be 'blocked' in the digital map,

because it runs under a bridge.

7. Conclusions and Future Work

Recent extensions of ILP witness a growing interest in description logics

and KDD applications. In this paper we have shown that AL-log is suit-
able for inducing multi-level association rules from multiple relations.

We have proposed an AL-log framework and a novel ILP setting to

work within it. The trade-o� between eÆciency and expressive power

is well known in the machine learning community. So we have shown

that eÆcient algorithms can be designed for coping with descriptive

data mining tasks where multiple levels of description granularity are

required. In particular we have proposed an implementation of the re-

�nement operator �O which is based on a graph of backward pointers.

The current version of SPADA admits only ALC primitive concepts

in the structural knowledge. Roles and complex concepts have been

disregarded. Yet we are con�dent that results obtained on this subset

of AL-log are still valid for full AL-log.
For the future we plan to investigate the properties of �O. Also we

intend to design a constraint-based language bias more suitable for

searching AL-log pattern spaces. The method can be further improved

by investigating proper measures of interestingness (e.g. pruning condi-

tions for the rule space) and the issue of robustness (e.g. techniques for

handling approximated spatial relations). Other issues, such as visual

representation of knowledge at multiple levels, should also be stud-

ied in depth. Furthermore, with the advent of data warehousing and

OLAP technologies, arranging data at multiple levels of abstraction

has become a common practice and boosted the research on multi-

dimensional databases (Ferri et al., 2000; Krogel and Wrobel, 2001). It

would be interesting to extend our method in this direction.
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On the application side, we plan to carry on experiments in geo-

graphic data mining and ask domain experts for evaluation of results.

Furthermore we would like to test SPADA as a tool for the exploration

of maps. As such it could be integrated into INGENS and used in stages

preliminary and/or complementary to map interpretation. We intend

also to tackle new applications among which ontology learning seems

quite promising.
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