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1. Introduction

Most of statistical techniques for data analysis have been designed for a relatively simple
situation: the unit for statistical analysis is an individual (e.g., a person or an object)
described by a well defined set of random variables (either qualitative or quantitative), each
of which result in just one single value.

Nowadays, data analysts are confronted with new challenges: they are asked to process data
that go beyond the classical framework, as in the case of data concerning more or less
homogeneous classes or groups of individuals (second-order objects) instead of single
individuals (first-order objects). A typical situation is that of census data, which raise
privacy issues in all governmental agencies that distribute them. To guarantee that data
analysts cannot identify an individual or a single business establishment, data are made
available in aggregate form. Data aggregations by census tracts or by enumeration districts
are examples of second-order objects.
                                                          
† Presently at the Department of Computer Science, The University of Liverpool, Chadwick Building, Peach St.,

Liverpool L69 7ZF, UK.

Abstract: Symbolic data analysis aims at extending classical data analysis
techniques to manage symbolic data, which are a form of aggregated data. This
extension passes through the definition of a new set of dissimilarity measures.
Many of them have been reported in the literature, but no comparative study
has been performed. This paper presents an empirical evaluation of
dissimilarity measures proposed for a restricted class of symbolic data, namely
Boolean symbolic objects. To define a ground truth for the empirical
evaluation, a data set with a fully understandable and explainable property has
been selected. Empirical results show a variety of, sometimes unexpected,
behaviours of the compared measures.
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Aggregated data describe a group of individuals by set-valued or modal variables. A
variable Y defined for all elements k of a set E is termed set-valued with the domain Y if it
takes its values in P(Y)={U | U � Y }, that is the power set of Y. When Y(k) is finite for each
k, than Y is called multi-valued. A single-valued variable is a special case of set-valued
variable for which |Y(k)|=1 for each k. When an order relation � is defined on Y then the
value returned by a set-valued variable can be expressed by an interval [�,�], and Y is
termed an interval variable. More generally, a modal variable is a set-valued variable with
a measure or a (frequency, probability or weight) distribution associated to Y(k).

A class or group of individuals described by a number of set-valued or modal variables is
termed symbolic data. Symbolic data lead to more complex data tables called symbolic
data tables. The extension of classical data analysis techniques to such tables is termed
symbolic data analysis [1]. Implementing an integrated software environment for both the
construction of symbolic data tables from records of individuals and the analysis of
symbolic data has been the general aim of the three-years ESPRIT project SODAS1 
(Symbolic Official Data Analysis System), concluded in November 1999. The recently
started three-years IST project ASSO (Analysis System of Symbolic Official Data) is
intended to improve the SODAS prototype with respect to several aspects (management
of symbolic data, new or improved data analysis methods, new visualization techniques).

An important module of the SODAS software is that concerning the computation of some
dissimilarity measures. Indeed, the extension of statistical techniques to symbolic data
requires the specification of some dissimilarity (or conversely, similarity) measures. Many
formulations of dissimilarity measures for symbolic data have been reported in literature
[5], but no comparative study on their suitability to real-world problems has been
performed. This paper presents an empirical evaluation of dissimilarity measures proposed
for a restricted class of symbolic data, namely Boolean symbolic objects (BSOs). To define
a ground truth for the empirical evaluation, a data set with a fully understandable and
explainable property has been selected. Empirical results show a variety of, sometimes
unexpected, behaviours of the compared measures. The reported experimentation is the
first step towards the fulfillment of one of the objectives of the ASSO project, namely
comparing various dissimilarity measures to support users in selecting the best measure for
their data analysis problem.

2. Dissimilarity measures for Boolean Symbolic Objects

Henceforth, the term dissimilarity measure d on a set of objects E refers to a real valued
function on E×E such that: ����� ),(),(),(* abdbadaadda  for all a,b�E.  Conversely,
a similarity measure s on a set of objects E is a real valued function on E×E such that:

0),(),(),(*
���� absbasaassa  for all a,b�E. Generally, ** dda �  and ** ssa �  for each

object a in E, and more specifically, d* = 1 while s* = 0. Studies on their properties can be
limited to dissimilarity measures alone, since it is always possible to transform a similarity
                                                          
1 The SODAS software is freely distributed by CISIA at the following URL address:

http://www.cisia.com/download.htm.
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measure into a dissimilarity one with the same properties. Many methods have been
reported in the literature to derive dissimilarity measures from a matrix of observed data
[4], or, more generally, for a set of symbolic objects [5]. In the following, only some
measures proposed for BSOs are briefly reported.
Let a and b be two BSOs:

a = [Y1=A1] � [Y2=A2] � ... � [Yp=Ap] 
b = [Y1=B1] � [Y2=B2] � ... � [Yp=Bp]

where each variable Yj takes values in a domain Yj and Aj and Bj are subsets of Yj. It is
possible to define a dissimilarity measure between two BSOs a and b by aggregating
dissimilarity values computed independently at the level of single variables Yj
(componentwise dissimilarities).  A classical aggregation function is the generalized
Minkowski metric. However, another class of measures defined for BSOs is based on the
the notion of description potential, �(a), which is defined as the volume of the Cartesian
product A1�A2� ... �Ap. For this class of measures, no componentwise decomposition is
 necessary, so that no function is required to aggregate dissimilarities computed
independently for each variable.

The list of dissimilarity measures considered in this study are reported in Table 1, where
they are denoted as in the SODAS software, namely:
U_1: Gowda and Diday’s dissimilarity measure [6];
U_2: Ichino and Yaguchi’s first formulation of a dissimilarity measure [7];
U_3: Ichino and Yaguchi’s dissimilarity measure normalized w.r.t. domain length [7];
U_4: Ichino and Yaguchi’s normalized and weighted dissimilarity measure [7];
SO_1: De Carvalho’s dissimilarity measure [2];
SO_2: De Carvalho’s extension of Ichino and Yaguchi’s dissimilarity [2];
SO_3: De Carvalho’s first dissimilarity measure based on description potential [3];
SO_4: De Carvalho’s second dissimilarity measure based on description potential [3];
SO_5: De Carvalho’s normalized dissimilarity measure based on description potential [3];
C_1: De Carvalho’s normalized dissimilarity measure for constrained BSOs [3].

The term constrained BSO refers to the fact that some dependences between variables are
defined, namely either hierarchical dependences (mother-daughter) which establish
conditions for some variables being not measurable (not-applicable values), or logical
dependences  which establish the set of possible values for a variable Yj conditioned by the
set of values taken by another variable Yk. An investigation of the effect of constraints on
the computation of dissimilarity measures is out of the scope of this paper, nevertheless it
is always possible to apply the measures defined for constrained BSOs to unconstrained
BSOs. This explains why C_1 has been considered in the empirical comparison reported
in the next section.

3. Experimental  evaluation

Many dissimilarity measures have been proposed for symbolic data analysis, nevertheless
they have never been compared in order to understand both their common and their
peculiar properties. In this section, an empirical evaluation is reported with reference to a
data set for which a desirable behaviour of a dissimilarity measure can be defined. The data
set is called “Abalone data” and is available at the UCI Machine Learning Repository
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Table 1. Dissimilarity measures available in the DI method for BSO’s, and related
parameters.

Name Componentwise
dissimilarity measure

Objectwise dissimilarity measure
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Table 2. Attributes of the Abalone data set
Attribute Name Data Type Unit Description
Sex Nominal M, F. I (infant)
Length Continuous mm Longest shell measurement
Diameter Continuous mm Perpendicular to length
Height Continuous mm Measured with meat in shell
Whole weight Continuous grams Weight of the whole abalone
Shucked weight Continuous grams Weight of the meat
Viscera weight Continuous grams Gut weight after bleeding
Shell weight Continuous grams Weigh of the dried shell
Rings Integer Number of rings

(URL: http://www.ics.uci.edu/~mlearn/MLRepository.html). It contains 4177 cases of marine
crustaceans, which are described by means of the nine attributes listed in Table 2. There
are no missing values in the data.

Generally this data set is used for prediction tasks. The number of rings (last attribute) is
the value to be predicted from which it is possible to know the age in years of the
crustacean by adding 1.5 to the number of rings. Since the dependent attribute is integer-
valued, this database has been extensively investigated in empirical studies concerning
regression-tree induction [8,10]. The number of rings varies between 1 and 29, with sample
mean equal to 9.934 and sample standard deviation equal to 3.224 (there are few cases of
crustaceans with less than 3 or more than 25 rings). The performance of regression-tree
induction systems reported in the literature is generally high, meaning that the eight
independent attributes are actually sufficiently informative for the intended prediction task.
In other words, two abalones with the same number of rings should also present similar
values for the attributes sex, length, diameter, height, and so on. Basing upon this
consideration we expect to observe that the degree of dissimilarity between crustaceans
computed on the independent attributes do actually be proportional to the dissimilarity in
the dependent attribute (i.e., difference in the number of rings). We will call this property
as monotonic increasing dissimilarity (shortly, MID property).

Abalone data can be aggregated into symbolic objects, each of which correspond to a range
of values for the number of rings. In particular, nine BSOs have been generated by
applying the DB2SO facility [9] available in the SODAS software (see Table 3).

The dissimilarity measures briefly presented in Section 2 have been applied to the BSOs
previously illustrated. In this example the value of the parameter � is set to 0.5, the order
of power q is 2 and the weights are uniformly distributed. Results are depicted in Figure
1. Dissimilarities are reported along the vertical axis, while BSOs are listed along the
horizontal axis, in ascending order with respect to the number of rings. Each line represents
the dissimilarity between a given BSO and the subsequent BSOs in the list. The number
of lines in each graph is eight, since there are nine BSOs. For the sake of clarity, the lower
triangular matrix of the dissimilarities depicted in the graph labeled ‘Abalone- U_1’ is
reported in Table 4.
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Table 3. Boolean symbolic objects generated by partitioning the Rings attribute into nine
intervals of equal length
BSO Rings Sex Length Diameter Height Whole Shucked Viscera Shell
1 1-3 I,M [0.08:0.24] [0.05:0.17] [0.01:0.06] [0.00:0.07] [0.00:0.03] [0.00:0.01] [0.00:0.02]
2 4-6 I,M,F [0.13:0.66] [0.09:0.47] [0.00:0.18] [0.01:1.37] [0.00:0.64] [0.00:0.29] [0.00:0.35]
3 7-9 I,M,F [0.20:0.75] [0.16:0.58] [0.00:1.13] [0.04:2.33] [0.02:1.25] [0.01:0.54] [0.02:0.56]
4 10-12 I,M,F [0.29:0.78] [0.22:0.63] [0.06:0.51] [0.12:2.78] [0.04:1.49] [0.02:0.76] [0.04:0.73]
5 13-15 I,M,F [0.32:0.81] [0.25:0.65] [0.08:0.25] [0.16:2.55] [0.06:1.35] [0.03:0.57] [0.05:0.80]
6 16-18 I,M,F [0.40:0.77] [0.31:0.60] [0.10:0.24] [0.35:2.83] [0.11:1.15] [0.06:0.48] [0.12:1.00]
7 19-21 I,M,F [0.45:0.74] [0.35:0.59] [0.12:0.23] [0.41:2.13] [0.11:0.87] [0.07:0.49] [0.16:0.85]
8 22-24 M,F [0.45:0.80] [0.38:0.63] [0.14:0.22] [0.64:2.53] [0.16:0.93] [0.11:0.59] [0.24:0.71]
9 25-29 M,F [0.55:0.70] [0.47:0.58] [0.18:0.22] [1.06:2.18] [0.32:0.75] [0.19:0.39] [0.38:0.88]

It is noteworthy that the MID property does not hold when the dissimilarity among BSOs
is computed by means of Gowda and Diday’s measure (U_1). Surprisingly, old crustaceans
with a high number of rings (25-29) are considered more similar to very young crustaceans
with low number of rings (1-3) than to middle aged abalones with 16�18 rings. Actually,
for all numeric variables the dissimilarity components due to position (D

�
) and content (Dc)

increase along the horizontal axis, while the component due to spanning (Ds) first increases
and then decreases. Spanning measures the difference between two interval widths and
indeed BSO1 and BSO9 seem pretty similar due to the fact that continuous variables have
intervals with the same (small) width despite the fact that the intervals are quite distant.
Incidentally, such intervals are relatively small since there are few cases of abalones
aggregated into BSO1 and BSO9. Thus, U_1 can lead to unexpected results in those cases
in which BSOs are generated from unequally distributed cases with respect to a given class
variable, such as rings. Also for the dissimilarity measure U_2 the MID property does not
hold and the first BSO is the most atypical. In particular, BSO1 and BSO7 are more similar
than BSO1 and BSO4. This can be explained by noting that the dissimilarity component
due to meet (�) has no effect when � is set to 0.5, while the join (�) of intervals in
BSO1 and BSO7 is lower than the join of intervals in BSO1 and BSO4, since all numerical
intervals of BSO7 are included in the corresponding intervals for BSO4. Generalizing, we
note that it is advisable not to nullify the effect of the meet operator by setting � = 0.5,
otherwise anomalous similarities can be found. Similar considerations apply to the
dissimilarity measures U_3 and U_4, although their normalization factor (i.e., domain

Table 4. Dissimilarity values computed by means of the dissimilarity U_1.
Rings 1-3 4-6 7-9 10-12 13-15 16-18 19-21 22-24 25-29
1-3 0
4-6 12.7126 0
7-9 13.8107 6.1026 0
10-12 13.6988 7.4184 3.8644 0
13-15 13.2341 6.6741 4.0135 2.7576 0
16-18 12.4039 7.7761 6.1147 5.2025 3.3863 0
19-21 11.6926 7.8082 7.263 6.8322 5.1771 3.0946 0
22-24 11.3287 9.1946 8.0059 7.6176 6.1752 4.8742 3.5518 0
25-29 9.2101 11.7497 12.1851 12.0065 11.1622 9.8778 8.1261 7.4043 0
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Figure 1. Graphs of ten dissimilarity measures for the abalone data.
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cardinality) tend to reduce the effect of the missing “meet” component. On the contrary,
the normalization by the join volume �(Aj � Bj), proposed by De Carvalho in SO_2, totally
removes the problem even when � = 0.5, and the expected MID property is satisfied.

The MID property is generally valid for SO_1 as well, and the atypical symbolic object is
still BSO1. However, in this case, the numerical variables have almost no effect on the
computation of the dissimilarity, since the agreement index at the numerator of each di,
namely �=�(Aj � Bj), is very small. As a matter of fact, the dissimilarity between two
symbolic objects is computed on the basis of the only nominal variable “sex.”

In the case of SO_3, the atypical object is the third, while BSO1 is considered similar to
all other symbolic objects, including BSO9. Once again, the contribution of the meet is
nullified by setting � = 0.5, nevertheless the situation is quite different from that presented
in the case of U_2. The effect of the join is multiplicative in the computation of the
description potential defined by De Carvalho, while it is additive in Ichino and Yaguchi’s
dissimilarity measures. In SO_3 small intervals can zero the dissimilarity, while in U_2
they have practically no effect. On the contrary, a single large interval can have a strong
impact in U_2, while it may have no effect in SO_3. In the Abalone data set, small intervals
are obtained by applying the join operator to continuous variables of symbolic objects
BSOi, i	3. This explains the strange behaviour of lines depicted in the graph “Abalone –
SO_3”. Also in SO_5, which is a normalized version of SO_3, the MID property is not
satisfied even though it has a more regular behaviour than SO_3 since the contribution of
the join operator on numerical variables is reduced.

Finally, in the case of C_1, the MID property is satisfied. According to this measure all
symbolic objects are quite dissimilar (the maximum distance is 1.0), and the most atypical
is that representing young abalones (BSO1).

Summarizing, the following conclusions can be drawn from this empirical evaluation:
1. Only three dissimilarity measures proposed by de Carvalho, namely SO_1, SO_2 and

C_1, satisfy the MID property. For all these measures the less typical object is that
representing very young abalones (BSO1).

2. When BSOs are generated from unequally distributed cases with respect to a given
class variable, the actual size of variable value sets Ai might simply reflect the original
distribution of cases. In particular, small value sets may be due to the scantiness of
cases used in the BSO generation process, while large value sets may occur because
of the natural variability in a large population of cases used to synthesize BSOs.
When this happens, distance measures based on the spanning factor (e.g., U_1) may
lead to unexpected results.

3. In Ichino and Yaguchi’s measures (i.e., U_2, U_3 and U_4), the contribution of the
meet operator should not be nullified by setting the parameter � to 0.5. An
intermediate value between 0 and 0.5 is generally recommended. Moreover, the
normalization proposed by de Carvalho (see SO_2) show better results. 

4. In the case of continuous variables, the width of value intervals is critical, since
dissimilarities measures based on additive aggregation tend to return high values
when only one componentwise dissimilarity is quite large, while measures based on
description potential return small values when only one componentwise dissimilarity
is quite small.
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4. Conclusions

In symbolic data analysis a key role is played by the computation of dissimilarity measures.
Many measures have been proposed in the literature, although a comparison that
investigates their applicability to real data has never been reported. The main difficulty was
due to the lack of a standard in the representation of symbolic objects and the necessity of
implementing many dissimilarity measures. The software produced by the ESPRIT Project
SODAS has partially solved this problem by defining a suite of modules that enable the
generation, visualization and manipulation of symbolic objects. In this work, a comparative
study of the dissimilarity measures for BSOs is reported with reference to a particular data
set for which an expected property could be defined. Interestingly enough, such a property
has been observed only for some dissimilarity measures, which actually show very different
behaviours. There are a number of possible directions for future research. One is to
experiment whether other data sets with fully understandable and explainable properties
related to the proximity concept. Another direction is to extend the empirical evaluation
to dissimilarity measure defined on probabilistic symbolic objects. A third direction is to
develop new dissimilarity measures for symbolic data that remove the two basic
assumptions, namely variable independence and equal attribute relevance.
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