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Abstract: This paper is related to part of the work done within the IST project
SPIN! (Spatial Mining for Data of Public Interest) managed by Eurostat. The
goal is that of extending methods and techniques based on the theory of
computational logic to the discovery of association rules in geo-referenced
statistical data. A novel technique is presented and preliminary results on its
application to census data from Stockport, one of the ten Metropolitan Districts
of Greater Manchester, UK, are reported.   
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1. Introduction

In some works on spatial representation from the social scientist's perspective [17],
socioeconomic phenomena have been conceptualized as spatial objects, without assuming
any particular application such as marketing or resource allocation. Spatial objects in this
sense are entities having both spatial location and spatially independent attribute
characteristics [8]. Population data are among the potentially spatial socioeconomic data.
They are most commonly related to geographic locations by reference to areal spatial
objects such as census zones, electoral constituencies, local government areas, or regular
grid squares. In the UK, for instance, the smallest areal unit for which census data are
published is nowadays the enumeration district (ED). The digital ED boundaries produced
for the 1991 UK census enable the spatial representation of census data in the computer
databases. Indeed, population censuses of the 1990s provided an added impetus to the
application of geographical information systems (GIS) to socioeconomic uses. These
advances in the practice of geo-referencing census data also caused a growing demand for
more powerful data analysis techniques that can analyze population data as spatial objects.

Statistical spatial analysis has been the most common approach to the analysis of geo-
referenced data [18, 20]. Being a well-studied area, it supplies a large number of algorithms
including various optimization techniques. It handles numerical data very well and usually
comes up with realistic models of spatial phenomena. The statistical approach to spatial
analysis shows some weaknesses in dealing with dependency in spatial data.  Most methods
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are exploratory and when applied to spatially correlated data some of them are of unknown
reliability having been developed initially, like so many areas in statistics, for situations
where observations are independent [9]. This contrasts with the nature of spatial data where
spatial objects are influenced by their neighboring objects as pointed out by [7]. In recent
times, alternative approaches to spatial analysis have been emerged. In particular, the
extension of data mining methods and techniques to spatial databases has been attempted
to allow the extraction of implicit knowledge, spatial relations, or other patterns not
explicitly stored in spatial databases [11]. Extracted knowledge can take on various forms
according to the spatial data mining task at hand (discrimination, characterisation,
clustering, classification, etc.). We are concerned with the task of mining spatial
association rules, namely the detection of associations between spatial objects [12].

In this paper we propose the application of logic-based methods and techniques to the
discovery of spatial association rules. In particular, we resort to Inductive Logic
Programming (ILP) which is a form of inductive learning derived from the theory of
computational logic [13]. Computational logic relies on an augmented expressive power
which allows us to represent spatial relations and symbolic background knowledge (such
as spatial hierarchies, spatial constraints and rules for spatial qualitative reasoning) in a
very elegant and natural way. Thus, it enables applications which can not be tackled by
traditional statistical techniques in spatial data analysis. The technique being proposed has
been implemented in the ILP system SPADA (Spatial Pattern Discovery Algorithm) [15].

This work is in partial fulfillment of the research objectives set by the IST project SPIN!
(Spatial Mining for Data of Public Interest) funded by the European Union
(http://www.ccg.leeds.ac.uk/spin/). From the application side, the aim of
the project is the development of an integrated interactive Internet-enabled spatial data
mining system to enhance decision-making based on spatio-temporally referenced data and
publish geographical data mining services on the WWW. The application to census data
from Stockport - one of the ten Metropolitan Districts of Greater Manchester, UK - is the
first step towards the fulfillment of the main social objective of the SPIN! Project, namely
to put to practical use the timely, cost-effective dissemination of statistical information over
the Internet.

The paper is organized as follows. Section 2 will introduce the task of mining spatial
association rules, by discussing some issues raised by the application of computational
logic to spatial data mining and the solutions adopted by the system SPADA. In Section
3 we report preliminary results on the application of SPADA to Manchester Stockport
census data. Conclusions and future work will be drawn in Section 4.

2. Mining spatial association rules with SPADA

The discovery of spatial association rules is a descriptive mining task aiming at the
detection of associations between reference objects and some task-relevant objects, the
former being the main subject of the description while the latter being spatial objects that
are relevant for the task at hand and spatially related to the former. For instance, we may
be interested in describing a given area by finding associations among large towns
(reference objects) and spatial objects in the road network, hydrography and administrative
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boundaries layers (task-relevant objects). The task usually involves massive spatial
computation to extract spatial relations from the underlying spatial database. Some kind
of taxonomic knowledge on task-relevant geographic layers may also be taken into account
to get descriptions at different concept levels (multiple-level association rules). As usual
in the problem setting of association rule mining, we search for associations with large
support and high confidence (strong rules).

The problem of mining spatial association rules can be formally stated as follows:
Given
� a spatial database (SDB),
� a set of reference objects S,
� some task-relevant geographic layers Rk, 1�k�m, together with spatial hierarchies

defined on them,
� a couple of thresholds for each level l in the spatial hierarchies, minsup[l] and minconf[l]
Find strong multiple-level spatial association rules.
The mining task at hand has been already tackled by Koperski and Han [12]. They propose
a top-down, progressive refinement method which exploits taxonomies both on topological
relations and spatial objects. The method has been implemented in the module Geo-
associator of the spatial data mining system GeoMiner [10].

We propose an upgrade of Koperski's method to more powerful representations of data.
The proposal is inspired to the work on multi-relational data mining done by Dehaspe and
De Raedt [3]. The basic idea is that a spatial database boils down to a set of logic-based
facts once the spatial relationships between reference objects and task-relevant objects have
been extracted. In particular, we adopt Datalog [2] as a representation formalism. Datalog
is a logic language for relational databases which allows us to represent spatial relations
and symbolic background knowledge (such as spatial hierarchies, spatial constraints and
rules for spatial qualitative reasoning) in a very elegant and natural way. Issues raised by
the application of ILP to data mining are briefly discussed in the next two Subsections. It
will turn out that the choice of a logic-based technique to accomplish the mining task at
hand heavily affects the whole data mining process. Further details can be found in [15].

2.1 Data preprocessing

In SPADA, data are represented by means of Datalog atoms. For instance, the Datalog
atom intersects(bari, a14) represents the fact that the highway a14 intersects the town of Bari.
Thus the task of mining spatial association rules requires some pre-processing on data
loaded from the spatial database. Data selection encompasses the retrieval of spatial objects
eventually together with their spatial and a-spatial properties and the extraction of spatial
relationships between reference objects and task-relevant objects. In particular, SPADA
can extract topological relations whose semantics has been defined according to the 9-
intersection model [5]. It is noteworthy that saving computational effort both in time (on-
line computation of spatial relations) and in space (materialization of spatial relations) is
a hot topic in spatial data mining. More sophisticated computational solutions are either
the two-step spatial computation [11] or the operations on neighbourhood graphs [6]. Once
selected, this data needs to be transformed in a suitable format. For instance, numerical
properties of spatial objects must be discretized in order to be handled by data mining
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methods in the framework of computational logic. SPADA currently implements the equal-
width discretization technique. An implementation of the relative unsupervised
discretization algorithm RUDE [14] is ongoing.

2.2 From data to association rules

The task of mining spatial association rules itself can be decomposed into two sub-
subtasks:
1. Find large (or frequent) spatial patterns
2. Generate highly-confident spatial association rules
The reason for such a decomposition is that frequent patterns are commonly not considered
useful for presentation to the user as such. They can be efficiently post-processed into rules
that exceed given threshold values. In the case of association rules the threshold values of
support and confidence offer a natural way of pruning weak and rare rules. Thus, the design
of algorithms for frequent pattern discovery has turned out to be a popular topic in data
mining, while the generation of highly-confident rules from frequent patterns is usually
performed according to the procedure given in [1].

The algorithm SPADA implements the levelwise method proposed by Mannila and
Toivonen [16], which is a kind of blueprint for frequent pattern discovery algorithms. The
method is based on a breadth-first search in the lattice spanned by a generality order �
between patterns. Given two patterns P1 and P1, we write P1� P2 to denote that P1 is more
general than P2 or equivalently that P2 is more specific than P1. The space is searched one
level at a time, starting from the most general patterns and iterating between candidate
generation and candidate evaluation phases. In SPADA, patterns are represented by means
of Datalog queries, namely existentially quantified conjunctions of Datalog atoms. For
instance, the Datalog query � is_a(X, large_town)�intersects(X, R)�is_a(R, road) expresses an
intersection pattern between a generic large town and a generic road. The pattern space is
structured according to �-subsumption [19]. For instance, consider the patterns

P1 � � is_a(X, large_town)�intersects(X,R)
P2 � � is_a(X, large_town)�intersects(X, R)�is_a(R, road)

We say that P1� P2 because P2 �-subsumes P1, namely there exists a substitution for
variables (�=�)such that P2��	 P1.

The candidate generation phase consists of a refinement step followed by a pruning step.
The former applies the refinement operator under �-subsumption to patterns previously
found frequent while the latter mainly involves verifying that candidate patterns do not �-
subsume any infrequent pattern. In particular, a refinement step consists of adding one or
more "allowed" Datalog atoms to the pattern to be refined. The list of "allowed" Datalog
atoms is given by the user while defining the language of patterns. In the example above,
the pattern P2 is obtained by adding the Datalog atom is_a(R, road) to the pattern P1. The
more restrictions we put on patterns, the smaller the search space, and hence the faster a
system will finish its search. The candidate evaluation phase is performed by comparing
the support of the candidate pattern with the minimum support threshold set for the level
being explored. If the pattern turns out not to be a large one, it is rejected. As for the
support count, the number of distinct reference objects that satisfy the pattern is assumed
as absolute frequency of the pattern in SDB. The support is obtained as relative frequency



Specifying collective outputs from UN/ECE activities on statistical information technology

545

with respect to total number of reference objects in SDB.

SPADA, analogously to Geo-Associator but differently from WARMR [4], exploits is-a
taxonomies for extracting multiple-level association rules. By doing so, it can explore
systematically the hierarchical structure of task-relevant geographic layers. We will
illustrate how SPADA works by means of an example. Let us suppose that the mining task
is to discover associations relating large towns (S) with water bodies (R1), roads (R2) and
province boundaries (R3) in the Province of Bari, Italy. We are also given a background
knowledge (BK) including the spatial hierarchies of interest. Consider that, at level l=2 in
the spatial hierarchies, the following candidate C:
is_a(X, large_town), intersects(X,R), is_a(R, main_trunk_road), intersects(Y, R), diff(Y,X), is_a(Y,
large_town)
has been generated after k=5 refinement steps and evaluated with respect to the underlying
database SDB. Since ten of eleven large towns satisfy the pattern C and all the ancestor
patterns of C are large at their level (l�2), the pattern is a large one at level l=2 with
support 91%. For the sake of clarity, the following pattern discovered after k=5 refinement
steps at level l=1
is_a(X, large_town), intersects(X,R), is_a(R, road), intersects(Y, R), diff(Y,X), is_a(Y, large_town)
is one of the large ancestors for the pattern C.
Such a way of taking the taxonomies into account during the pattern discovery process
implements what we referred to as the systematic exploration of the hierarchical structure
of task-relevant geographic layers. Furthermore, it is noteworthy that the use of variables
and the addition of the atom diff(Y,Z) derived from the BK allow the algorithm to distinguish
between multiple instances of the same class of spatial objects (e.g. the class large_town).
During the transformation of frequent patterns into rules, the following strong rule (91%
support, 91% confidence)
is_a(X,large_town) , is_a(Y,large_town) , diff(Y,X)


 intersects(X,R) , is_a(R,main_trunk_road) , intersects(Y,R)
has been derived from the pattern C. It states that "Given that 91% of large towns intersect
a main trunk road which in turn is intersected by another large town distinct from the
previous one, 91% of pairs of distinct large towns are crossed by the same main trunk
road”.

3. Experimentation on Stockport census data

As aforementioned, one of the main objectives of the SPIN! Project is to put to practical
use the timely, cost-effective dissemination of statistical information over the internet. This
will allow the project partners to evaluate the efficiency of methods, techniques and
algorithms, the responsiveness of the application, as well as acceptance by customers of
statistical offices.

As for the census data, the primary task was to define the application area, taking into
account the advise from Eurostat to use the UK 1991 census data and to involve end users.
The analysis dealt with the potential requirements of individuals and organisations for data
and data processing in areas of public interest. The topic area selected for identifying
potential users and their potential use of data was the public debate over Unitary
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Development Plans (UDPs) in the United Kingdom. This topic area is a useful case study
for several reasons:
� there are many complex problems of spatial data use
� there are similar situations in most European countries to which the methods and

techniques developed for a UK case may be easily applied
� there is a very high level of recorded information about the issues and the use of data

in the Public Enquiries which commonly follow the publication of plans.
The district chosen for investigation was Stockport, one of the ten Metropolitan Districts
of Greater Manchester, UK. The UDP was published in 1992, subject to a public enquiry
in 1995, and reviewed in 2000. It has eight main areas of policy, Environment, Countryside
and Open Space, Housing and Population, Economy, Shopping, Transportation, Leisure
and Community Facilities and Minerals and Waste Disposal. In order to provide a tractable
subject area for analysis the Public Enquiry documentation was examined looking for areas
of keenest public debate and for topics in which spatial data was central to the discussion.
Two areas provided a point of focus, namely the allocation of land for Housing
Development and Transport Planning.

The Stockport case study is expected to show the potential benefit of data mining methods
and techniques to one or more potential users. In particular, census data are extremely
important for policy analysis. Furthermore, once geo-referenced and conceptualized as
spatial objects with numerical a-spatial properties, they seem to be a good test-bed for
spatial association rule mining algorithms. Thus, an experimentation on Stockport census
data has been designed for testing SPADA.

Fig. 1. An is-a hierarchy for the Stockport ED layer

Census data and digital ED boundaries have been loaded into an Oracle-Spatial database,
i.e. a relational DBMS extended with spatial data handling facilities. The ED code has been
attributed to each table as primary key in order to allow the joining of the two kinds of data
and the generation of test data. We had to face several application issues mainly due to the
nature of census data. Firstly, census data are all numeric. Thus attributes with a large
domain have been discretized and possibly normalized. Census attributes in our
experimentation are listed in Table 1. Data on employment (see attributes c24- c35) refer to
persons aged 16 and over. Secondly, census data are geo-referenced with respect to the
following hierarchy

ED 
 Ward 
 District 
 County
based on the inside relationship among locations. The Stockport district is divided into
twenty-two wards (Bredbury, Brinnington, Cale Green, Cheadle, Cheadle Hulme North,
Cheadle Hulme South, Davenport, East Bramhall, Edgeley, Great Moor, Hazel Grove,
Heald Green, Heaton Mersey, Heaton Moor, Manor, North Marple, North Reddish,
Romiley, South Marple, South Reddish, West Bramhall), each of which consists of thirty

ED

bredbury_ED

fa30fa01

brinnington_ED

fb01 fb23

west_bramhall_ED

fx01 fb28
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EDs in average. Stockport census data are actually available at the ED level. Furthermore,
the current version of SPADA deals only with is-a hierarchies where the is-a relationship
is overloaded, i.e. it may stand for kind-of as well as for instance_of depending on the
context. Thus, EDs have been grouped so that EDs belonging to the same ward fall in the
same class as shown in Figure 1. Further is-a hierarchies could be derived by resorting to
clustering algorithms.

Table 1. Numerical attributes in the application to Stockport census data.

Attr. Description Discretized domain
c24 Total Females of Employees (full time) Low ([1.0, 40.33[)

Medium ([40.33, 70.66[)
High ([70.66, 119.0])

c25 Total Males of Employees (full time) Low ([0.0, 59.33[)
Medium ([59.33, 118.66[)
High ([118.66, 178.0])

c26 Total Females of Employees (part time) Low ([0.0, 26.0[)
Medium ([26.0, 52.0[)
High ([52.0, 78.0])

c27 Total Males of Employees (part time) Low ([0.0, 4.66[)
Medium ([4.66, 9.33[)
High ([9.33, 14.0])

c28 Total Females of Self-employed - with employees Low ([0.0, 5.33[)
Medium ([5.33, 10.66[)
High ([10.66, 16.0])

c30 Total Males of Self-employed - with employees Low ([0.0, 19.33[)
Medium ([19.33, 38.66[)
High ([38.66, 58.0])

c32 Total Females of On a Government scheme Low ([0.0, 1.66[)
Medium ([1.66, 3.33[)
High ([3.33, 5.0])

c33 Total Males of On a Government scheme Low ([0.0, 3.0[)
Medium ([3.0, 6.0[)
High ([6.0, 9.0])

c34 Total Females of Unemployed Low ([0.0, 10.0[)
Medium ([10.0, 20.0[)
High ([20.0, 30.0])

c35 Total Males of Unemployed Low ([0.0, 24.33[)
Medium ([24.33, 48.66[)
High ([48.66, 73.0])

c36 Total Car availability in All Households (Households with
3 or more cars counted as having 3 cars)

Low ([5.0, 151.66[)
Medium ([151.66, 298.33[)
High ([298.33, 445.0])

Preliminary results have been obtained by running the algorithm SPADA on such
preprocessed census data. We have focused our attention on transportation planning, which
is one of key issues in the UDP. An example of mining task is to discover frequent patterns
relating

� EDs with a high rate of employment and car availability (S)
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� EDs (R) to be characterised with respect to data about percentage of self-employment
with employees.

with thresholds for the minimum support min_sup[1]=0.75 and min_sup[2]=0.05.
We are also given some background knowledge (BK) that, besides the hierarchy in Figure
1, includes the following rule:
ed_with_high_employment_and_car_availability(X) :- is_a(X,ed), c32(X,low), c33(X,low),

c34(X,low), c35(X,low), c36(X,medium).
to express the constraint on S. From the extraction of spatial objects in S and R, the
selection and transformation of numerical properties of interest (see Table 1) and the
computation of the adjacency relationship among objects in S and objects in R, we obtain
the Datalog database D(S) to be given in input to the system. The specification of language
bias and other settings is also required. It serves as directives to the candidate generation
phase.
Some interesting patterns have been discovered. For instance, at level l=1 in the spatial
hierarchy, the following frequent pattern:
20) ed_with_high_employment_and_car_availability(A), adjacent_to(A,B), is_a(B,ed),
adjacent_to(A,C), C\=B , c28(B,low) , c30(C,low)
AbsFreq 201  ,  Support=[0.9804878048780488]
Candidate n. 84 ,  Level=1 ,  K=6
has been generated after k=6 refinement steps.
By exploring systematically the is-a hierarchy on ED layer, some frequent descendants of
the pattern n. 20:
267) ed_with_high_employment_and_car_availability(A), adjacent_to(A,B),
is_a(B,bredbury_ED), adjacent_to(A,C) , C\=B , c28(B,low) , c30(C,low)
AbsFreq 16  ,  Support=[7.804878048780488e-002]
Candidate n. 3048 ,  Level=2 ,  K=6
271) ed_with_high_employment_and_car_availability(A), adjacent_to(A,B),
is_a(B,cheadle_ED), adjacent_to(A,C) , C\=B , c28(B,low) , c30(C,low)
AbsFreq 17  ,  Support=[8.292682926829269e-002]
Candidate n. 3044 ,  Level=2 ,  K=6
275) ed_with_high_employment_and_car_availability(A), adjacent_to(A,B),
is_a(B,cheadle_hulme_north_ED) , adjacent_to(A,C) , C\=B , c28(B,low) , c30(C,low)
AbsFreq 21  ,  Support=[0.1024390243902439]
Candidate n. 3040 ,  Level=2 ,  K=6
….
have been generated after k=6 refinement steps at level l=2.
One may wonder whether such frequent patterns convey novel knowledge and, in positive
case, what kind of knowledge. The evaluation of data mining results is beyond the scope
of this paper. Nevertheless a naive interpretation of results in our application might lead
us to state that in the Stockport district there is no high risk of traffic congestion due to
employees living in a certain ED and driving to work in adjacent EDs.

4. Conclusions and future work

In this paper a logic-based technique for association rule mining in spatial data has been
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presented. The application to census data of Manchester Stockport shows that the
expressive power of computational logic enables us to tackle applications that cannot be
handled by statistical spatial analysis. The experimentation is the first step towards the
fulfillment of one of the main objectives of the SPIN! Project, namely to put to practical
use the timely, cost-effective dissemination of statistical information over the Internet.

For the near future, we plan to optimize the system SPADA. Besides the issues of
efficiency and scalability that are of great interest to data mining community, the issue of
robustness (noise handling, for instance) will be faced. It is noteworthy that, in spatial data
mining, robustness has another facet. Indeed, while the discovery of association rules in
transactions requires little transformation of stored data, the task of mining spatial
association rules relies on a more complex data pre-processing which is error-prone. For
instance, the generation of the predicates close_to or adjacent_to is based on the user-defined
semantics of the closeness and adjacency relations, which should necessarily be
approximated. Further work on the data selection and transformation is expected to give
some hints on this issue. As for the test on real-world spatial data sets, much work has also
to be done. In particular, we are interested in experiments that highlight the strong
interaction among census data and topographic information. Indeed, geographic layers
supply topographic information which enrich the range of spatial objects and may impact
on the meaningfulness of spatial relationships between EDs. For instance, once the
hydrographic layer has been superimposed, it might come out that two adjacent EDs are
actually separated by a river. Conversely, by taking the infrastructure layer into account,
two non-adjacent EDs may turn out to be connected by a highway. These examples show
that the interpretation of adjacency and closeness relations can change as spatial objects
are added.
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