
1

Building Metaphors for Supporting
User Interaction with Multimedia
Databases

M. F. Costabile, D. Malerba
Dipartimento di Informatica, Università degli Studi di Bari
Via Orabona 4, I-70126 Bari, Italy
{costabile, malerba}@di.uniba.it

M. Hemmje, A. Paradiso
Integration Information Systems Institute, GMD
Dolivostrasse 4, D-64293 Darmstadt, Germany
{hemmje, paradiso}@darmstadt.gmd.de

Abstract
In this paper we discuss how metaphors for supporting user interaction with
multimedia databases can be automatically generated. The work presented is a
further step in the development of Virgilio, a Virtual Reality (VR) based system
that has been designed to be a general purpose exploration tool for highly
structured data. Virgilio visualizes the results of a query to a database by
generating VR scenes, that exploit appropriate metaphors in order to take
advantage of common knowledge about real world objects, thus reducing the
cognitive load in the process of information assimilation. We analyze two specific
components of the Virgilio architecture, the Query Management Tool and the
Metaphor Definition Tool, and we identify a completely automatic procedure to
define the metaphor that will be exploited in the construction of the VR scene. The
implementation of this procedure exploits the backtracking search strategy of
Prolog interpreters to solve a typical constraint satisfaction problem.

Keywords
Multimedia Database, User Interaction , Metaphor, Constraint Satisfaction

1 INTRODUCTION

In many of nowadays web-based environments for electronic marketing and
commerce, that present large multimedia product and service catalogues, it
becomes more and more difficult to provide naive end users, such as private
consumers or commercial business partners, with intuitive user interfaces to access
the large multimedia collections describing the presented products and services.
The same holds for marketing managers and other employees responsible for
managing and maintaining the large and constantly changing set of multimedia
information chunks and fragments contained in these collections.
As a consequence, many efforts are devoted to improve the quality of the
interaction between users and databases. Virtual Reality (VR) techniques are a
promising interaction paradigm particularly suited to novice and/or occasional
users. The users are facilitated in the database navigation since the system proposes
them an environment that reproduces a real situation and gives the possibility of
interacting by manipulating objects that have a direct correspondence with known
objects.

VR techniques combine the advantages of 3D visualizations with the power of
metaphorical representations. Presenting the result of a database query through a
VR scene allows users to explore data more easily since they interact with familiar
objects. The structural and dynamic properties of the objects in the virtual world,
i.e. the way objects can be composed and can act themselves, are predictable since
they belong to the users' general background. No particular training should be
required to interact with and explore the dataset, thus reducing the learning
overhead of naive users when accessing information.

Virgilio is a VR based system that has been designed to be a general purpose
exploration tool for highly structured data. It is capable of visualizing large sets of
objects of considerable intra-object and inter-object complexity through effective
VR techniques. Virgilio is based on several metaphors in order to take advantage
of common knowledge about real world objects, thus reducing the cognitive load
in the process of information assimilation. The overall system has been presented
in (Massari et al., 1997), where lot of emphasis was posed on the generation of the
3D scenes, once the metaphor exploited in the visualization was chosen in a semi-
automatic way, i.e. with the intervention of the system administrator. In this paper
we discuss how metaphors for supporting user interaction with multimedia
databases can be automatically generated in Virgilio. Therefore, we are more
concerned with specific components of the Virgilio architecture, the Query
Management Tool and the Metaphor Definition Tool, whose aim is to identify with
a completely automatic procedure the most appropriate metaphor to be exploited in
the construction of the VR scene.

Our work represents a further step in the Virgilio project, since we have
automated the choice of a proper VR visualization of the results of the user's query.
In other words, the definition of the mapping (or metaphor) between the query

result and objects of a virtual world, that was a task of the System Administrator in
the previous release of Virgilio is now performed automatically by the system.

The content of the paper is the following. Section 2 introduces the concepts of
logical, physical, and VR information spaces. Section 3 discusses metaphor in user
interfaces and illustrates its use in the Virgilio system. The architecture of Virgilio
is presented in Section 4. Section 5 describes the process that generates from a
query to the database all information necessary to the construction of the VR
scene. Section 6 gives the conclusions.

2 INFORMATION SPACES: FROM LOGICAL TO VR

In order to allow users easy access to a database, the information stored in the
database needs to be visualized in an information space. This visualization can
either be carried out by the user in the user's mind, in which case it is essentially
the user's conceptualization of the database; or the visualization could be
accomplished by the system, in which case the visualization is generated on the
display screen. The latter is what it is actually defined information visualization,
i.e. "a process of transforming information into a visual form enabling the user to
observe information" (Gershon et al., 1997). The essence of this process is to
visually present information that is non inherently visual, such as text. Recent
research has proved that successful visualization can reduce the time to get
information, and to make sense out of it; it also enhance creative thinking.

Database objects, in general, are abstracted from real-life objects in the real
world. Therefore, we can distinguish the logical information space and the physical
information space (Chang and Costabile, 1997). In the logical space, the abstract
database objects are represented. In the physical space, the abstract database
objects are materialized and represented as physical objects that reflect real-life
objects, such as diagrams, icons and sketches. For example, each object is
materialized as an icon, and the physical information space consists of a collection
of icons. These icons can be arranged spatially, so that the spatial locations
approximately reflect the relations among database objects.

To create visualizations, the information in the logical space must be mapped
into a physical space that will represent relationships contained in the information
faithfully and efficiently. In this way, users will exploit their innate abilities to
understand spatial relationships, also shifting most cognitive processing load to the
perceptual system.

In the physical information space, the objects reflect real-world objects, but the
world is still an abstract world. One further step is to present information in a VR
information space. VR allows the users to be placed in a 3D environment they can
directly manipulate. What the users see on the screen will be the same as what can
be experienced in the real world. 3D features can be used to present the results in a
VR setting. For example, if the database refers to the books of a library, we can

represent a Virtual Library in which the physical locations of books are indicated
by blinking icons in a 3D presentation of the book stacks of the library. What the
user sees on the screen will be the same (after simplifications) as what can be
experienced in the real world.

It is worth noting that we are talking about "nonimmersive" VR (Robertson et
al., 1993), that is the user is placed in a 3D environment he/she can directly
manipulate without wearing head-mounted stereo displays or special gloves, but
acting only with mouse, keyboard, and monitor of a conventional workstation.

The real world, from which the database objects are abstracted, is the
environment that the database objects must relate to. The real world is often
abstracted in the information space. Only in the VR information space will the real
world be represented in a direct way. Indeed, finding a good spatial representation
of the information at hand is one of the most difficult tasks in visualization of
abstract information. The key problem in information visualization is to invent
visual metaphors for non physical data (Gershon et al., 1997). Next section
discusses the power of metaphorical representation and their use in database
interaction.

3 METAPHOR IN USER INTERFACES

The literal meaning of metaphor (from the Greek word 'metaphorein') is to transfer
or to carry across. One of the most important aspects of metaphor is that it gives
the possibility of going from familiar concepts to unknown ones. The definition of
metaphor given by Lakoff and Johnson (1980) says "metaphor is a rhetoric figure,
whose essence is understanding and experiencing one kind of thing in terms of
another". Thanks to the metaphor we can move from familiar concepts to unknown
ones, thus incorporating new knowledge in old. Often, for introducing a new
concept we present it in relation to a well known one, thus simplifying the learning
process. For example, the model of the atom is usually presented with reference to
the structure of the solar system.

Metaphors consist of two sets of component concepts, a target component and
a source component (Martin, 1990). The target consists of the concepts we are
actually referring to (also said the original idea). The source refers to the concepts
in terms of which the intended target concepts are being viewed (the borrowed
idea). Conventional metaphors are represented as sets of associations, or relations,
between source and target concepts. Source and target concepts usually belong to
different domains, and the familiarity with the source domain is exploited to
understand the target concepts. The metaphor specifies how the source concepts
correspond to the various target concepts. It establishes a mapping between target
and source domains.

Metaphor is acknowledged as a fundamental tool in creative interface design,
since it provides the user with a friendlier environment to work with (Mountford,

1990; Erikson, 1990). It is well known that an ideal metaphor does not exist, but it
is extremely important to choose the metaphor which is appropriate depending on
the particular situation. Some insights on metaphorical design are given in
(Marcus, 1994; Madsen, 1994). In database interfaces, metaphors have been
exploited for representing the intensional part of the database, that is the data
schema; in such cases, the metaphor mediates between the data model and the user
(Haber et al., 1994; Catarci et al., 1995). Most end users are actually concerned
with the extensional part of the database, therefore it is appropriate to offer them a
scenario where the information contained in the database is metaphorically
represented in a VR environment, i.e. in a virtual world, so that the user is no
longer aware of a presence of a structured database, but he/she is interacting as in
the real world.

Virgilio is a system that supports the definition of a metaphor as a mapping
between data in the result of a query to a database and objects in a virtual world.
Several metaphors are actually available in the system, so that different mappings
between a same data set, representing the target domain, and different virtual
worlds, each representing a source domain, can be generated in order to present to
users the most effective environment for their preferences and expectations. One of
the most used virtual worlds in Virgilio is a "building" with several floors, and an
entrance with an elevator to reach different floors. On each floor, there is a
corridor with several rooms, and in each room there are pieces of furniture, as it
happens in the real world. Different virtual worlds are available in Virgilio: one is
a book store, where there are several areas, each one with several shelves on which
books are shown; another is a ship, with the different elements that are typical in
real ships. Yet, other virtual worlds can be input into the system. The main
contribution of this paper is the automatic construction of the mappings between
the dataset and the available virtual worlds, as described in Section 5.

4 VIRGILIO ARCHITECTURE IN BRIEF

The architecture of the overall Virgilio system, as described in (Massari et al.,
1997), is shown in Figure 1. The main components are: a) three modules, called
Query Management Tool, Metaphor Definition Tool, Virtual World Object Editor;
b) a global repository of information that includes three meta databases containing
information necessary to generate the visualizations, namely the Query Repository,
the Metaphor Repository and the Virtual World (VW) Objects Repository; c) the
Scene Constructor Server. The other items displayed in Figure 1, that is a DBMS
with the database storing the data the users want to access to, a Web Browser, and
an unspecified web network connection are considered external to Virgilio. The
database is assumed to be a generic one with a structure composed of different
kinds of objects, many semantic relationships, and possibly containing multimedia
data.

Virgilio has been designed to be a general purpose exploration environment for
highly structured data. It is capable of visualizing large sets of objects of
considerable intra-object and inter-object complexity through effective VR
techniques. The data resulting from a query execution are presented in a 3D virtual
environment by exploiting appropriate metaphors that refers to the various virtual
worlds available in Virgilio.

Information on the virtual worlds and all objects they include is stored in the
Virtual World Object Repository, and it is provided to the system through the
Virtual World Object Editor.

The Query Repository stores representations of both the performed query and
the data set that is the result of a query (called answer set in the rest of the paper),
that are needed for the process of metaphor definition and the construction of the
VR scene. By metaphor definition we mean the definition of the mapping between
objects in the database and objects in a virtual world, that are chosen among those
available in the system. This is done by the Metaphor Definition Tool, and
information about such a mapping is stored in the Metaphor Repository. The VR
scene is generated by the Scene Constructor Server on the basis of the information
stored in the various repositories.

DataBase

Virgilio
Meta
DB

Web
VRML
Browser

Query Managment
Tool

Metaphor
Definition Tool

Scene
Constructor Server

 Metaphor
Repository

End
User

VW Objects
Repository

DBMS VW Objects
Editor

System
AdministratorQuery

Repository

Figure 1. Architecture of Virgilio System.

As shown in Figure 1, there are two different types of users interacting with
Virgilio: the end user and the system administrator. End users interact with
Virgilio by retrieving 3D scenes and browsing embedded information by means of
a VRML Browser. A typical interaction between Virgilio and the end user is: the
user starts browsing a VR scene; when the user decides to navigate another scene

of a virtual world, a message is sent back to Virgilio which, in response, will
generate a new scene that will be displayed on the screen, and so on.

In the architecture proposed in (Massari et al., 1997), the system administrator
was a fundamental intermediary between end user and system, since he/she
performed three important tasks:
1. defining queries according to users' needs;
2. specifying a set of proper VR visualizations of such queries by defining a

mapping (or metaphor) among data in the query results and objects of a virtual
world;

3. defining new virtual world objects, specifying both their visual aspects and the
containment relationships with other objects.
If we want Virgilio to become a complete VR based system for both querying a

generic database and browsing the query results, we should automate the above
first two tasks, so that no human intermediary should be necessary in the dialogue
between the end user and the system. Task 3 is the only one that goes beyond the
capabilities of a end user; defining a new virtual world by specifying all its objects
with their attribute is a complicate task that needs to be done off-line by a team of
design specialists. The new VR objects are input to the system through the Virtual
world object editor, and stored into the VR object repository, so that they will be
accessible by both the metaphor definition tool and the Scene Constructor Server.

In the next section we describe how we have automated task 2, so that once a
query has been formulated by some visual query interface, translated in an
appropriate language used by the DBMS and the query results are retrieved in the
database, such results are suitably processed in order to automatically define the
appropriate metaphor for their visualization in the VR scene.

5 FROM QUERY TO RESULT VISUALIZATION

We now describe the whole process that generates, from a query to a database, a
VR scene that allows the user to browse the query results. The main steps of this
process are the generation of a so-called structure tree and its Prolog representation
(see below), the construction of a mapping from the structure tree into a virtual
world, and the visual representation of such a mapping. The original query is
actually input to VIRGILIO through a visual query interface, whose analysis goes
beyond the scope of this paper (see (Catarci et al., 1997) for examples of visual
query interfaces). Such an interface translates a visual query into an SQL query
which can be managed by a standard relational DBMS.

5.1 Generation of the structure tree

In the Virgilio operating framework, the DB model is richer than a simple
relational one. Indeed, Virgilio operates with those models which can support the

notion of nested relation (Atzeni and De Antonellis, 1993). Informally speaking, a
nested relation is a set of tuples such that the values of attributes are allowed to be
nested relations themselves. Nested relations organize information in a hierarchical
structure, which may also be detected in the query results. In this context, we can
state that Virgilio is a VR system for the visualization and exploration of nested
relations according to the browsing paradigm.

Obviously, when Virgilio operates on extended relational DB the result of a
query is a nested relation. However, when visual queries are transformed into
standard SQL queries, the query result is a flat relation, which is not appropriate to
be browsed. In this case it is possible to apply the nest operator that produces
nested relations from flatter ones (Atzeni and De Antonellis, 1993). For instance,
let us consider the following SQL query concerning a database of songs where also
information about singers, published CD's, and music types is available together
with some relationships among these entities.

Query 1:
SELECT musicType.name, musicType.notes, band.name, band.photo, album.title,

album.cover, song.title
FROM musicType, band, album, song , tipicSings, contained , published
WHERE album.code=contained.albumCode AND tipicSings.bandCode=band.code

AND album.code=published.albumCode AND band.code=published.bandCode
AND song.code=contained.songCode
AND tipicSings.musicName= musicType.name

ORDER BY musicType.name, band.name, album.title;

The result of the query would be a flat relation that can be transformed into a
corresponding nested relation:

musicType (name: string, notes: text, band (name: string, photo: picture, album
(title: string, cover: picture, song (title: string))))

The structure of a nested relation is represented by a structure tree (Massari et
al., 1997). A structure tree can be described by recursively composing the two data
representation constructs "set_of" and "record". Informally, a "set_of" is an
unordered set of elements of the same type; a "record" is a list of elements which
can be of different types. One or more elements of a record can be a "set_of". Thus
a structure tree is composed of nodes and edges, every node being a "set_of" or a
"record" construct. Formally, a structure tree can be recursively defined as follows:
1. D, where D is an atomic domain of values;
2. set-of (T), where T is a structure tree;
3. record A1:T1, …, An:Tn end, where the Ai's are distinct symbols, and the Ti's are

structure trees.
An example of structure tree concerning the nested relation reported above is

given in Figure 2.

STRING

PICTURE

contains

contains

isofisof

MUSIC TYPE

BAND

contains

collects

isof

isof isof

STRING

isof

ownsowns

collects

owns

ownsowns

owns owns

contains

COVER

collects

collects

isof

MUSIC

MUSIC TYPES

NAME NOTES BANDSBANDS

STRING TEXT

ALBUM

ALBUMS

STRING IMAGE

TITLE

TITLE

SONG

SONGS

NAME PHOTO

Set_of

Record

Key Attribute

Attribute

Type of data

Figure 2. The structure tree for the query 1.

The root node is a record with only one field, whose value is the nested relation
MUSIC TYPES resulting from the query. This root node actually indicates the
database involved in the query, and might occasionally have some atomic values
(called accessories in VIRGILIO) describing the database itself. The relation
MUSIC TYPES is a set of records with two atomic values, a string (NAME) and a
text (NOTES), and a nested relation (BANDS). The first of the attributes of the
relation MUSIC TYPES is considered as a key. Similarly, the relation BANDS is a
set of records with two atomic values, a string (NAME) and an image (PHOTO),
and a nested relation (ALBUMS). The interpretation of the rest of the tree is
straightforward.

The architecture of the Query Management Tool that is a component of the
Virgilio System (see Figure 1) is detailed in Figure 3. Beside the Visual Query

Interface the main modules are the Structure Tree Generator and the Prolog Query
Generator. The former takes in input an SQL expression, computes the answer set
by querying the operational database, transform the answer set into a nested
relation by analyzing the structure of the SQL query, and generates the
corresponding structure tree. This task is performed by using two tools appropriate
for the transformation of structured input, namely Flex and Bison, which are the
evolution of the well-known Lex and Yacc, respectively (Levine et al., 1990). Flex
is used to implement a scanner of SQL queries, while Bison is applied to build the
corresponding parser.

Nested
Relation

Structure
Tree

Structure
Tree

Prolog
Query

Parser

scanner

Token

Query
Repository

DataBase

Structure Tree Generator

SQL
QueryVisual

Query
Interface

Prolog
Query

Generator

Figure 3. Architecture of the Query Management Tool.

Whenever a sequence of input tokens matches one of the rules in the grammar
of SQL queries, an action is taken. Actions concern the selection of relations and
attributes involved in the query, the identification of joining attributes, and the
nesting based on the clause ORDER BY. The structure tree representing the nested
relation is stored in the Query Repository and is passed to the Prolog Query
Generator that transforms the structure tree into a Prolog query useful for the
mapping process. This module takes in input the nested relation as well, since the
query Prolog should include information on the cardinalities of relations
composing the nested relation. Finally the Prolog query is stored in the Query
Repository.

5.2 Requirements for the mapping

Once the structure tree of a query has been generated, it is necessary to map the
structure tree into some virtual world taken from a set of predefined virtual worlds

stored into the VR Object Repository. The mapping process has to meet a number
of requirements, namely
• Consistency with the structure-tree: The metaphor should allow for browsing

data according to the hierarchical relations expressed in the structure tree.
Indeed, the organization of the results by a structure tree is based on the
structure of the SQL query, that is, on the way in which the user has
formulated his/her request. When the correspondence between the structure of
the SQL query and the “structure” of the virtual world is strict, the user will
browse more easily, since he/she already knows the directions to choose.

• Completeness of the metaphor: All data in the result relation of a query should
be reachable from the starting point of exploration.

• Realism of the virtual world: The scenes presented to the user should be fairly
realistic. For instance, showing a big wall with hundreds of posters is not the
best way to aggregate data concerning lyric singers.

• Effectiveness of the metaphor: Properties of objects in the virtual world should
match properties of data they represents. For instance, a CD in a virtual scene
represents some songs and by clicking on it should be possible to hear a song,
while pages of a book are more appropriate to represent the text of songs.

5.3 Categorization of virtual world objects

Whether the result of a query could be represented by a virtual world strongly
depends on the variedness of the virtual world. Objects of the virtual world can be
categorized into three different classes:
1. Aggregators, which do not necessarily represent a piece of data by themselves,

but aggregate a set of virtual world objects (virtual objects for short) of
different type. For instance, a table can aggregate a book and a picture frame,
the former used to represent text of songs while the latter showing the portrait
of a singer. A folder is also an aggregator since it can be used to aggregate a
variable number of documents of different type.

2. Classifiers, which assemble sets of aggregators of the same type. For instance,
a chest-of-drawers is a classifier since it contains several drawers. Of course, a
classifier may be more appropriate than another for representing a particular
set of data. An important factor is the number of aggregators it contains. A
real chest-of-drawers contains from two to six drawers, while a book has from
eighty to one thousand pages. Therefore, for each classifier it is necessary to
define a minimum and a maximum number of aggregators to be assembled.

3. Accessories, which represent a specific type of data. A poster is an example of
accessory useful to represent image data, while a label is an example of
accessory used to represent a string.

It is interesting to observe that some aggregators may have two different visual
representations: external and internal. The former is called aggregator symbol, and
is typically shown when the user is browsing a classifier, while the latter is the

natural representation of the aggregate, and is shown once the user has chosen an
aggregator from a classifier. For instance, a room is an aggregator normally
accessed from a corridor (classifier). Its internal representation is obvious and
depends from the aggregated data, while its external representation might be a door
with a name label on it. Thus, when the user is in the corridor, he/she sees only
several doors, but when he/she enters a certain room he can see every object
inside.

5.4 Metaphor definition as a constraint satisfaction problem

Our approach toward the automatic definition of a metaphor is based on the fact
that knowledge on the virtual worlds can be easily represented in a logical
formalism. In particular the universe of discourse concerns virtual objects
(aggregators, classifiers, accessories), the aggregator symbols, the types of data,
and the integer numbers. Each element of the universe of discourse is identified by
a distinct constant. For instance, if we consider the virtual world “building” we can
define the following constants:
• AGGREGATORS: elevator, room, floor, drawer, folder, page;
• CLASSIFIERS: button-table, chest-of-drawers, album, corridor, folder-

collection;
• ACCESSORIES: floor-name, sideboard, poster, board, picture, photo, door-

label, drawer-picture, drawer-label, index-item;
• AGGREGATOR SYMBOLS: door, drawer-front, index, button;
• TYPES OF DATA: string, text, picture, image.
 Interrelationships between objects of the universe of discourse are expressed by
ground facts. Some of the predicates concern the relations reported in a structure
tree. They are:
• contains(Aggregator, Classifier), stating that Classifier can be contained in

Aggregator;
• collects(Classifier, Aggregator), stating that Classifier can collect a set of

Aggregators;
• owns(Aggregator, Accessory) or owns(AggregatorSymbol, Accessory), stating

that Aggregator (Symbol) can contain an Accessory;
• is-of(Accessory, TypeOfData), defining the type of data associable to

Accessory.
Moreover, the predicate hasicon(Aggregator, AggregatorSymbol) defines the

Aggregator Symbol associated to an Aggregator, while predicates
hasmin(Classifier, Integer) and hasmax(Classifier, Integer) are used to express
realistic constraints on the number of objects aggregated by a classifier. This
prevents the generation of fictitious scenes, e.g. buildings with thousands of floors
or books with one page. If it is necessary to represent hundreds of tuples, a more
appropriate virtual world will be selected by the system.

An example of possible interrelationships between objects of the virtual world
“building” is reported in Figure 4.

Given a background knowledge on some virtual worlds, the problem of
mapping the structure tree into some virtual world can be cast as a problem of
constraint satisfaction. As shown by Mackworth (1977), one way to view a
constraint satisfaction problem is as the problem of providing a constructive proof
of the validity of a formula (without function symbols) of the form F→G, where F
is the world description expressed as a conjunction of ground literals listing all
facts in the world, while G is the goal, that is an existential formula with a
conjunction of literals (the constraints). The constructive proof of formula's
validity automatically yields a substitution for the existential variables.

contains(elevator,
button-table).

contains(room,
chest-of-drawers).

contains(room, album).
contains(floor, corridor).
contains(drawer,

folder-collection).

collects(button-table,floor).
collects(corridor,room).
collects(chest-of-
drawers,drawer).
collects(folder-collection,

 folder).
collects(album,page).

hasmin(button-table,2).
hasmin(corridor,1).
hasmin(chest-of-drawers,0).
hasmin(folders,1).

hasmin(album,1).
hasmax(button-table,20).
hasmax(corridor,30).
hasmax(chest-of-drawers,

 20).
hasmax(folder-collection,

10).
hasmax(album,30).

owns(floor,floor-name).
owns(floor,sideboard).
owns(room, poster).
owns(folder,photo).
owns(room,door-label).
owns(drawer,drawer-label).
owns(drawer,

drawer-picture).
owns(door,door-label).
owns(drawer-front,

drawer-picture).
owns(drawer-front,

drawer-label).

isof(floor-name,string).
isof(drawer-label,string).
isof(door-label,string).
isof(button-label,string).
isof(sideboard,text).
isof(board,text).
isof(picture,picture).
isof(drawer-picture,picture).
isof(photo,picture).
isof(poster,image).

hasicon(room, door).
hasicon(drawer,

drawer-front).
hasicon(page, index).
hasicon(floor, button).
hasicon(elevator,nil).
hasicon(folder,nil)

Figure 4. An example of background knowledge on the virtual world “building”.

In our specific application, F is the description of a virtual world (e.g.,
“building”), while G is the description of the structure tree, which is represented as
a conjunction of nonground literals whose variables are existentially quantified.
Such literals describe the structure of the query, and define the actual number of
elements aggregated by a classifier. The same predicate symbols above are used to
describe a structure tree. For instance, the logical formulation of the structure tree
in Figure 2 is reported in Figure 5, where the integer numbers are cardinalities of
the relations composing the nested relations determined by the query.

From a practical point of view, we can use Prolog interpreters to prove
formula's validity (Shalkoff, 1990). The logic program is the set of ground facts of

the background knowledge, while the Prolog query is the logical formulation of
the structure tree. The answer computed by the Prolog interpreter defines the
instantiations of the variables in the Prolog query with some virtual objects. In this
way the mapping of the structure tree into some virtual world is completely
defined, that is the metaphor is eventually generated. As an example, the answer
computed for the query in Figure 5 will define the following instantiations reported
in Figure 6.

∃ contains(RecordMusic, SetofMusicTypes) ∧ hasicon(RecordMusic,RecordMusicIcon)∧
collects(SetOfMusicTypes, RecordMusicType) ∧
hasicon(RecordMusicType, RecordMusicTypeIcon) ∧
hasmin(SetOfMusicTypes, MinMusicTypes) ∧ 7 >= MinMusicTypes ∧
hasmax(SetOfMusicTypes, MaxMusicTypes) ∧ MaxMusicTypes >= 7 ∧
owns(RecordMusicType, AttributeNameType) ∧ isof(AttributeNameType, string) ∧
owns(RecordMusicType, AttributeNotes) ∧ isof(AttributeNotes, text) ∧
contains(RecordMusicType, SetOfBands) ∧ collects(SetOfBands, RecordBand) ∧
hasicon(RecordBand, RecordBandIcon) ∧ hasmin(SetOfBands, MinBands) ∧
2 >= MinBands ∧ hasmax(SetOfBands, MaxBands) ∧ MaxBands >= 30 ∧
owns(RecordBand, AttributeName) ∧ isof(AttributeName, string) ∧
owns(RecordBand, AttributePhoto) ∧ isof(AttributePhoto, image) ∧
contains(RecordBand, SetOfAlbums) ∧ collects(SetOfAlbums, RecordAlbum) ∧
hasicon(RecordAlbum, RecordAlbumIcon) ∧ hasmin(SetOfAlbums, MinAlbums) ∧
1 >= MinAlbums ∧ hasmax(SetOfAlbums, MaxAlbums) ∧ MaxAlbums >= 8 ∧
owns(RecordAlbum, AttributeTitle) ∧ isof(AttributeTitle, string) ∧
owns(RecordAlbum, AttributeCover) ∧ isof(AttributeCover, picture) ∧
contains(RecordAlbum, SetOfSongs) ∧ collects(SetOfSongs, RecordSong) ∧
hasicon(RecordSong, RecordSongIcon) ∧ hasmin(SetOfSongs, MinSong) ∧
1>=MinSong ∧ hasmax(SetOfSongs, MaxSong) ∧ MaxSong >=10 ∧
owns(RecordSong, AttributeNameSong) ∧ isof(AttributeNameSong, string)

Figure 5. Logical formulation of the structure tree in Figure 2.

RecordMusic ← elevator
RecordMusicIcon←nil
SetOfMusicTypes←button-table
MinMusicTypes←2
MaxMusicTypes←20
RecordMusicType←floor
RecordMusicTypeIcon←button
AttributeNameType←floor-name
AttributeNotes←sideboard
SetOfBands←corridor
MinBands←1
MaxBands←30
RecordBand←room
RecordBandIcon←door
AttributeName←door-label

AttributePhoto←poster
SetOfAlbums←chest-of-drawers
MinAlbums←0
MaxAlbums←20
RecordAlbum←drawer
RecordAlbumIcon←drawer-front
AttributeTitle←drawer-label
AttributeCover←drawer-picture
SetOfSongs←folder-collection
MinSongs←1
MaxSongs←10
RecordSong←folder
RecordSongIcon←nil
AttributeNameSong←folder-name

Figure 6. Instatiations of the variables of the query in Figure 5 that define the
mapping between structure tree and virtual world.

It is interesting to observe that there might be several answers for the same
Prolog query, that is several metaphors to represent the results of the same SQL
query. When this happens, it is important to have a criterion for choosing one of
the possible metaphors. The choice might be based on the most recent virtual
world used to answer a query of the same user. The underlying assumption is that
the user is more familiar with the most recently visualized virtual world. On the
contrary, we have defined no criterion for choosing among metaphors concerning
the same virtual world, since any reasonable choice should be based on a user
model not currently available in Virgilio.

5.5 The metaphor definition tool

In Virgilio, the mapping process described above is performed by the Metaphor
Definition Tool (MDT). The MDT takes in input both the background knowledge
on the virtual worlds and the Prolog query, and produces a metaphor graph that
associates each node of the structure tree with some virtual object. The Virtual
World Object Repository is the database where background knowledge on the
virtual worlds is stored, while the Query Repository stores the structure trees and
their corresponding Prolog queries. The metaphor graph is stored in the Metaphor
Repository, so that it can be retrieved by the Scene Constructor Server that builds
the sequence of scenes of the chosen virtual world that visualizes the query results.
The scenes are constructed by using VRML, but the work performed by the Scene
Constructor Server is out of the scope of this paper.

Two examples of scenes built using a prototype of Virgilio are depicted in
Figures 7 and 8 (Paradiso, 1997). They concern query 1 whose result has been

mapped into the metaphor "building". The user may browse the query result by
walking into the building from its entrance to the different floors and rooms.

Figure 7. One of the scenes visualizing the result of query 1. The scene shows a
floor of the "building".

Figure 8. Another scene visualizing the result of query 1. It shows the inside of
one of the rooms whose doors are visible in the scene in Figure 7.

The scene in Figure 7 shows a floor of the "building"; the floor represents a
type of music. The corridor provides access to different rooms, each one associated
to a band. The names of the bands are written on the door labels. In Figure 8 we
see another scene shown the inside of one of the rooms whose doors are visible in
the scene in Figure 7. The users can see different objects representing he
information related to the band. In this examples the band is actually the famous
singer "Sting" whose picture is shown in a poster on the wall, together with his
name. The drawers contain albums of such a singer.

6 CONCLUSIONS

In this paper we have presented a novel approach to automatically generate
metaphors to be exploited in the interaction between users and databases. The
metaphor definition problem has been treated as a constraint satisfaction problem,
that is viewed as the problem of providing a constructive proof of the validity of a
formula.

The work discussed in this paper is a further step in the development of
Virgilio, a Virtual Reality (VR) based system that visualize objects in a database
through effective VR techniques. We have illustrated the process that generates
from a query to the database all information necessary to the construction of the
VR scene that visualizes the query results, also allowing the users to conveniently
browse such results.

As future work, we are planning to incorporate a user model into the system, so
that it can provide further knowledge to be exploited in the choice of the metaphor.
Moreover we are planning some more accurate testing of the current prototype
with end users, from which we can should get significant feedback in our design.

ACKNOWLEDGMENTS

The authors appreciate Annabella Loconsole and Marcello L'Abbate for their
helpful collaboration on the implementation of parts of Virgilio during their stage
at the Department of Computer Science of the University of Bari and at in the
GMD-IPSI Institute of Darmstadt.

REFERENCES

Atzeni, P. and de Antonellis, V. (1993) Relational Database Theory. Benjamin/
Cummings, Redwood City, CA.

Catarci, T., Costabile, M.F. and Matera, M. (1995) Visual Metaphors for
interacting with Databases. ACM SIGCHI Bulletin, 27(2), 15-17.

Catarci, T., Costabile, M.F., Levialdi, S. and Batini, C. (1997) Visual Query
Systems for Databases: A Survey. Journal of Visual Languages and
Computing, 8, 215-260.

Chang, S.K. and Costabile, M.F. (1997) Visual Interface to Multimedia Databases,
in The Handbook of Multimedia Information Management (eds. W.I. Grosky,
R. Jain, and R. Mehrotra), Prentice Hall, Upper Saddle River, NJ, 167-187.

Erickson, T.D. (1990) Working with Interface Metaphors, in The Art of Human-
Computer Interface Design (ed. B. Laurel), Addison Wesley, Reading, MA,
65-73.

Gershon, N., Card, S. and Eich, S.G. (1997) Information Visualization, in Chi 97
Tutorial Notes, Atlanta, USA, 22-27 March 1997.

Haber, E. M., Ioannidis, Y. E. and Livny, M. (1994) Foundation of Visual
Metaphors for Schema Display, Journal of Intelligent Information Systems, 3,
1-38.

Lakoff, G. and Johnson, M. (1980) Metaphors We Live By. The University of
Chicago Press, Chicago.

Levine, J., Mason, T. and Brown, D. (1992) Lex & Yacc, 2nd edition. O'Reilly and
Associates, Sebastopol, CA.

Mackworth, A.K. (1977) Consistency in networks of relations, Artificial
Intelligence, 8, 99-118.

Madsen, K. H. (1994) A Guide to Metaphorical Design, Communications of the
ACM, 37, 57-62.

Marcus, A. (1994) Managing Metaphors for Advanced User Interface,
Proceedings of International Workshop AVI'94, ACM Press, New York, 12-
18.

Martin, J.H. (1990) A Computational Model of Metaphor Interpretation. Academic
Press, San Diego.

Massari, A., Saladini, L., Hemmje, M. and Sisinni, F. (1997) Virgilio: A Non-
Immersive VR System To Browse Multimedia Databases, Proceedings of the
IEEE International Conference on Multimedia Computing and Systems, IEEE
Computer Society Press, Los Alamitos, CA, 573-580.

Mountford, S.J. (1990) Tools and Techniques for Creative Design, in The Art of
Human-Computer Interface Design (ed. B. Laurel), Addison Wesley, Reading,
MA, 17-30.

Paradiso, A. and Hemmje, M. (1997) A Generic Refinement of the Virgilio
System's Design and a Prototypical Architecture. GMD Technical Report, Nr.
1093, September 1997.

Robertson, G.G., Card, S. K. and Mackinlay, J.D. (1993) Nonimmersive Virtual
Reality, IEEE Computer, 26(2), 81-83.

Scholkoff, R.J. (1990) Artificial Intelligence: An engineering Approach, Mc Graw
Hill, New York.

BIOGRAPHY

Maria F. Costabile received the Lurea degree in Mathematics at the Universita'
della Calabria. Since 1989 she is associate professor at the Department of
Computer Science of the University of Bari, Italy. From 1978 to 1988 she worked
at the Dipartimento di Matematica, Universita' della Calabria. She has been visiting
scientist in several foreign universities. Her current interests include theory of
visual languages, visual interfaces, visual languages for querying databases,
human-computer interaction, usability of interactive systems, user models. She has
published several papers on the above topics, and edited four books. She served in
committees of international conferences, and as program co-chair of AVI'96 and
AVI'98. She is member of ACM, IEEE, AICA, IAPR. She is chairing the Italian
Chapter of ACM SIGCHI.

Matthias Hemmje is a member of the OASYS information systems research
division at GMD-IPSI in Darmstadt, Germany. He is working in various projects
related to object-relational Multimedia Database Management Systems. Currently,
he is responsible for R&D of the ICE DataBlade Module (a database supported
Information Catalogue Environment enabling navigation on multimedia
documents), as well as a VRML-, an MPEG-, and an SGML- DataBlade Module.
He has been conducting the design and development and evaluation of
LyberWorld and VIRGILIO prototypes, both 3D graphical information
visualization systems. Besides Multimedia Information Systems, his research
interests include computer human interaction and information visualization for
information systems.

Donato Malerba received the Laurea degree in Computer Science from the
University of Bari, Italy, in July 1987. In 1991 he joined the University of Bari
where he currently holds the rank of Assistant Professor in the Department of
Informatics. In 1992, he has been a visiting scientist at the Department of
Information and Computer Science, University of California at Irvine. His research
interests are in machine learning, artificial intelligence and pattern recognition.
Applications include document classification and understanding, knowledge
discovery in databases, map interpretation and interfaces. He has published more
than forty papers in international journals and refereed conference proceedings.

Aldo Paradiso received the Laurea degree in Computer Science from the University
of Bari, Italy. He has been employed at the GMD-IPSI Institute in Darmstadt,
Germany, where he is currently working on his PhD thesis. During his stay at GMD
he has worked on the Virgilio Project, also creating a prototype of the system. His
research interests include information visualization, particularly using Virtual
Reality approaches. At the present he is working on Human Modeling using VR
approaches.

