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CHAPTER 4

A Multistrategy Approach to
Learning Multiple Dependent
Concepts

D. MALERBA
G. SEME RARO
F. ESPOSITO

1. INTRODUCTION

In concept learning from examples, it is instructive to distinguish the situation
in which only one concept has to be induced (single-concept learning) from that
in which there are several concepts to be learned (multiple-concept learning). In
the former case, the learner is provided with examples (positive instances) and
optionally counterexamples (negative instances) of the single concept and
produces a generalization that is complete (ali positive instances are explained
by means of the generalization) and possibly consistent (negative instances, if
any, cannot be explained). Many learning systems presented in the literature
can actually learn only one concept at a time. Some of the most renowned are
Vere's Thoth (Vere, 1975), Mitchell's candidate-elimination algorithm
(Mitchell, 1977), Stepp's AQ7UNI (Stepp, 1979), and the recent FOIL system
developed by Quinlan (l 990a).

Few researchers have taken an interest in the problem of learning many
concepts. Indeed, it is commonly believed that the task of learning m distinct
concepts can simply be cast as m single concept learning tasks. No attention is
paid to the sequential order in which concepts have to be considered, and
sometimes it is cIaimed that ali concepts could be learned in parallel by
assigning each single-concept learning task to a distinct processor. ActuaIIy,
this view of the matter is adequate only if we assume that concepts are
mutually independent (independence assumption). Concept independence entails
the independence of the m single-concept learning problems, in which case
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88 LEARNING MUL T1PLE DEPENDENT CONCEPTS

there would be no reason to worry about the order in which concepts are
learned.

Even though in many applications such an assumption is reasonable, it
cannot be accepted as a generaI mIe. In many other cases, it is possible to
facilitate the learning task by exploiting information about the mutuaI relation­
ships between concepts. In fact, when the independence assumption is dropped,
the learner is required to hypothesize the description of each single concept, as
well as the dependencies between concepts.

In this chapter we present problems that occur when the independence
assumption is made, such as a decrease in predictive accuracy and an increase
in the computational complexity of the learning task. We also point out some
new issues that the consideration of concept dependencies can raise, namely,
the definition of the correct order in which concepts have to be learned, the
adoption of the notion of extensional coverage, and the control of mutuaI
recursion. For the first of them, we propose a multistrategy approach in which
statistical techniques are profitably exploited in order to infer concept depend­
encies before starting the learning process of each single concept. Knowledge
on dependencies can subsequentIy be used by the learner that can perform the
opportune shift of language before trying to learn each single concept. Since
the appropriateness of the statistical techniques depends on the power of the
representation language adopted, we have organized our presentation into two
main sections: the next is devoted to attribute-based domains, and the third

section is dedicated to structural domai ns. Some positive results obtained in a
real-world problem with a first-order learning system, called INDUBljCSL,
are al so illustrated.

2. MUL TIPLE-CONCEPT LEARNING IN ATTRIBUTE-BASED DOMAINS

Traces of the independence assumption can already be found in some of the
early studies that represented milestones for work on learning from examples
in attribute-based domai ns. For instance, given a set of hypotheses, V = {V;},

i= l, ... , m, and a family of facts F = {FJ, which are only partially described
by the hypotheses, Michalski and Larson (1978, p. 2) define the learning
problem as the production of a new set of hypotheses, Vi = {Vi}, where each
vjl describes ali the facts in the set Fj, and does not describe facts in any other

set Fj' j # i. In this statement of the problem, there is an implicit assumption
that each example must belong to only one c1ass, that is, that c1asses are
mutually exclusive. Since concepts are intensional descriptions of c1asses, this
means that the possibility of dependence among concepts is excluded a priori.
Quinlan (1986, p. 86) is more explicit when he establishes that each object in
the universe belongs to one of a set of mutually exclusive c1asses. For Rendell
(1986, p. 181), a hypothesis cou1d be an assertion involving any number of
c1asses, but it is always possible to consider one dichotomy at a time. For
exampIe, a universe of visual grids could be categorized into 26 letters plus a
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nonsense class, but instead each letter can be learned separate/y by performing
induction 26 times. Once again, there is no space for expressing dependencies
among concepts.

General1y, the learning problem for attribute-based domains is stated as
follows:

Given a set of examples (or observations) described by means of a feature
vector:

Find a hypothesis for predicting the value of c from the values of al'

The attributes ai are knowlI attributes, while c is the only attribute to be
predicted (target attribute) and represents the class of each example. In a more
generaI case, however, there are several target attributes and each observation
is described as a feature vector:

where Cl' C2, ... , Cm are attributes to be predicted. This is the case in which we
need to learn several concepts of the same domain (Oatta and Kibler, 1993).
For instance, the horse-colic database, which is available in the machine
learning repository at the University of California, Irvine, collects data con­
cerning horses hospitalized at Guelph (Canada) that suffer from "colicky"
symptoms (McLeish and Cecile, 1990). For each case, there are at least four
variables to be predicted, namely:

I. Cl == V23: outcome (Iived, died, was euthanized);

2. C2 == V24: surgicallesion? (yes, no);

3. c3 == V25: site of lesion (gastric, sm intestine, Ig colon,. o.); and

4. c4 == V26: type of lesion (simple, strangulation, inflammation, other)o

Note that Cl' C2' ... , Cm do not represent mutual1y exclusive classes in which the
universe of observations is partitioned, but conversely, each of them defines a
distinct partitioning. Therefore, it is important to take into account possible
dependencies among target attributes, since they can help to produce simpler
and more accurate and comprehensible hypotheseso In the example above, the
prediction of the type and site of lesion can help to establish the outcome and
whether the problem is surgical or not. Another instance is that given in Figure
4.1. In this case there are only two known attributes and three target attributes,
each of which defines a distinct partitioning of the feature spaceo If the learner
had no possibility of defining piecewise region boundaries in its language of
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Figure 4.1. Concept C; can easi/y be recognized when concepts c, and C:> have already been
learned.

hypotheses, then it would not be able to find any generalization for C3• On the
contrary, by taking concept dependencies into consideration, the system could
easily learn the concepts Cl and C2, and could then express c3 as a logical and
of two tests on Cl and C2: C3 = dCI /\ c2.

2.1. The Problem of the Order

The main issue raised by the abolition of the independence assumption is the
need to define the order in which concepts should be learned, since the

detìnition of a concept may depend on the definition of other previously
learned concepts. In particular, if a target attribute Ci is re!evant for the target
attribute cj, whereas ali known attributes are not, then it is extremely
important to learn Ci first, and then to use it as a known attribute while

learning cj• Wrong ordering may also affect the learnability of some target
concepts. Basically we can say that the definition of an order in which concepts
are to be learned is the main aspect of learning several dependent concepts. But
how is it possible to find the right order?

In some application domains, the user already knows which are the possible
dependencies among concepts to be learned. For instance, in the case of the

horse-colic database, it is not difficult to establish that Cl and C2 depend on c3
and C4. When concept dependencies are acyclic, it is possible to use directed
acyclic graphs, called dependency graphs, to represent them (see Figure 4.2). In

dependency graphs a node represents a concept to be learned, while an arrow

from Ci to cj indicates that cj depends on Ci' For each concept Ci' it is possible
to associate a level according to the following criterion: if Ci depends on

{cit, Ci2'···' ciJ, then level(cJ = I + max{level(ci), level(ci2), •.. , level(ciJ}. By
definition, if Ci does not depend on any concept, then level(cJ = O. The order
in which concepts should be learned is fully defined by the dependency graph.
In particular, concepts at the zeroth level, called minimally dependent concepts
(Malerba, 1993) or golden point (Baroglio et al., 1992), have to be learned first,
since they do not depend on any other concept. Concepts at the i-th level
(i > O) will be learned only after ali concepts at the j-th leve!, with j < i, have
been learned, since concepts at a lower level must be considered as known
attributes/predicates while learning concepts at the i-th level. In other words,



MUL T1PLE-CONCEPT LEARNING IN ATTRIBUTE-BASED DOMAINS 91

2 2/'li'l l l

/~~kl
O O O

Cl c2 000 cko

Figure 4.2. An example o{ a dependency graph. The upper index denotes the level al each

concept.

the order in which concepts have to be learned defines the appropriate shift of
language that is necessary while learning multiple concepts.

When the user does not know the dependencies among concepts, it is
possible to infer the graph before learning the single concepts. The approach
followed to discover the graph is inherently muItistrategic. Statistics pro vide
several tools for studying probabilistic (in)dependencies between variables, the
best known of them being the "/ test for contingency tables. Given two

variables, say Ci and Cj, then the independence hypothesis:

can be tested by comparing the expected celi frequencies to the actual values
according to the following formula:

where i: equals the observed frequency in each celi, and i: equals the expected
frequency (Hogg and Tanis, 1977). By rejecting the null hypothesis, however,

we can only conclude that there is a systematic relationship between Ci and Cj,
without being able to indicate a direction of dependence. For this purpose,
several asymmetric measures oi association have been proposed in statistics.

Lambda ().) is a measure of association for nominai variables and gives the
percentage of improvement in our ability to predict the value of the dependent
variable once we know the value of the independent variable (Mueller et al.,
1970). This is based on the assumption that the best strategy for prediction is
to select the value of the dependent variable that covers most cases, since this
choice will minimize the number of wrong guesses. Given two concepts, say Ci

and Cj' we ha ve:
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A value of zero means no improvement in predicting one concept given the
other one, while the value 1.0 occurs when one concept can be deterministically
predicted from the other one. Thus we can choose the dependency direction

Ci -+ Cj if À(cj, C) > ),(c j' cJ
Piatetsky-Shapiro (1991) proposed a different measure for the dependency­

analysis of nominai values, called probabilistic dependency (pdep). If C~k) denotes
the value taken by the target attribute Ci in the k-th observation, then

pdep(cj, c) is the conditional probability that cj will take on the same value in
two observations in which Cj is the same, p(C~k) = cY) I c:k) = C~'»). Normalization
of pdep using a proportional reduction in variation results in Goodman and

Kruskal's T measure of association (1972), which is always between O and I.

Once again, we choose the dependence direction Cj -+ cj if T(Cj, c) > T(Cj, cJ
Finally, Somer's D is an asymmetric measure of association suitable for ordinai
variables (Gibbons, 1993). It is based on the computation of the number of

concordant and discordant pairs. Given two pairs of observations, (C~k), C~'))

and (C~k), cy)), they are concordant if the relative ordering of c:k) and C~') is the
same as the relative ordering of C~k) and cy); otherwise they are discordant.
Somer's D assumes a value in the interval [ - l, l], where the absolute value is
proportional to the strength of the correlation between the two variables, while
the sign indicates whether the correlation is positive (the dependent variable
grows with the independent variable), or negative.

It is worthwhile noting that probabilistic measures of association discover
simple (in)dependencies between pairs of variables. Nevertheless, the depend­
ency graph can be simplified when conditional independencies between vari­
ables are considered. For instance, if CI -+ c2 -+ C3 is the true underlying
dependency graph of three concepts, then non-conditional tests of indepen­
dence for some probabilistic measure of association might also find a direct
dependency between CI and C3• Several studies have been performed on the
problem of inferring probabilistic dependency graphs from data. In particular,
Cooper and Herskovits (1992) proposed a Bayesian method for constructing
Bayesian belief-networks (Neapolitan, 1990; Pearl, 1988) from a database. A

Bayesian belief-network is a directed acyclic graph in which nodes represent
domain variables (i.e., concepts, in our case) and arcs between nodes represent
probabilistic dependencies.

When concept dependencies express causai influence, it is possible to exploit
other statistical methods for discovering causai models from empirical data,
such as Pearl and Verma's Inductive-Causation Algorithm (Malerba et al.,
1994; Pearl and Verma, 1991). Basically, a causai model is a directed acyclic
graph whose nodes are variables and whose edges denote direct causai
reationships between pairs of variables. Causai relationships can be potential
or genuine, according to whether we have sufficient (control) knowledge to be
able to reject the hypothesis of a spurious association. In the latter case,
correlation between two variables can only be explained by postulating the
existence of a common latent cause. Finally, it is possible to have indefinite
associations, for which it is not even possible to hypothesize the existence of a
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%1 = intelligence

%2 = study level

%3 = leniency

cl = preparation

C2 = final score

Figure 4.3. An example of causai model.

common latent cause. Pearl and Verma provide a theory of causai inference in

which they show how it is possible to discriminate among these kinds of
relationships on the basis of the conditional independencies between variables.
Henceforth, the independence of two variables, say XI and X2, given a set S of
variables, will be denoted as [(x l' x21 S). The set S is said to be the context in
which the independence holds. To show how causaI models discovered by
means of the lnductive-Causation Algorithm can be exploited in multiple­
concept learning, we generated a sample of 1,000 observations concerning the
model in Figure 4.3.

Each attribute has an ordinaI domain with three possible values: low (L),
medium (M), and high (H). Two of them are target attributes, while the other
three are known. We built a contingency table for each pair of variables to test
the independence in the empty context, and we used a X2 test on each table.
For testing conditional independence with non-empty contexts we had to
generate as many subtables as the number of possible values that variables in
the context could take. At the significance level rx= 0.05 we detected the
following independencies:

[(XI' x210)

[(x2, x310)

[(XI' x310)

[(x2, c21 {CI})

[(XI' c21 {CI})

[(x3' CI 10)

The Inductive-Causation Algorithm builds the originaI model but with the
difference that ali the causaI relationships except CI -+ c2 are potential and not
genuine.

Having discovered the causaI dependencies between the variables, we used
a learning system to induce the causaI rules from the data. In particular, two
learning problems were defined: the first for learning the causaI la w that relates
the study level and the intelligence of a student with hisjher preparation, and
the second for learning how the preparation and leniency of the examiner affect
the final result of the examination. In order to solve both problems we used
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(a)

(b)

Figure 4.4. The two decision trees generated by C4.5 for the causai model in Figure 4.3. Here.
leaves are represented by boxes. Triplets of numbers in each node represent the distribution

of examples reaching the node with respect to the values taken by the target attribute. namely
L, M and H.

C4.5 (Quinlan, 1993), a learning system that induces decision trees from
examples. In particular, in the first problem, examples are described by means
of x l' X2' and the c1ass (target) attribute c l' while, in the second problem,
examples are described by means of Cl' x3' and the c1ass (target) attribute C2.

The results are shown in Figure 4.4. The composition of the training cases at
a leaf F gives a probability P(K I F) that a case at F belongs to c1ass K, where
the probability can be estimated as a relative frequency (Quinlan, 1990b). For
instance, in the case of a moderately lenient examiner and an insufficiently
prepared student, the probability of having a low score is 71/(71 + 16) = 0.82,
while the probability of having a medium score is 16/(71 + 16) = 0.18. From
tree b) in Figure 4.4, we can al so draw the conclusion that even students with
an insufficient or moderately good preparation can get a high score if the
examiner is particular1y lenient. These and other rules can be directly derived
in an explicit form by transforming each decision tree into a set of production
rules. Classification rules whose condition parts contain target concepts are
called contextua/ ru/es (Malerba, 1993).



MUL T1PLE·CONCEPT LEARNING IN STRUCTURAL DOMAINS 95

3. MULTIPLE-CONCEPT LEARNING IN STRUCTURAL DOMAINS

Issues raised by the independence assumption are even more evident when we
consider a more powerful representation language, such as first-order predicate
logic, which allows us to represent structural descriptions. In this case, each
concept can be represented by means of a single predicate, hence the name
mutiple predicate learning (OeRaedt et al., 1993). In addition to the problem of
the order observed for attribute-based representations, there are other difficul­
ties, caused by the adoption of a more powerful language, that concern the
particular model of generalization employed by the learning system and the
generation of mutually recursive rules.

3.1. The Issues of Extensional Coverage and Mutuai Recursion

Several systems that 1earn first-order logic theories expressed as sets of Horn
clauses resort to the syntactic notion of extensional coverage, in order to define
the properties of completeness and consistency for a hypothesis H. Let E be
the set of positive (E+) and negative (E-) instances of one or more target
predicates PI' P2"'" Pn' that is, E = E+ U E-. Then H extensionally covers an
example e E E, if and only if there exist a clause c E H and a substitution 8,
such that the head of c matches the head of e (head(c){} = head(e» and the body
of c 8-subsumes the body of e (body(c){)- ç body(e» (Plotkin, 1970). Such a
syntactic notion of coverage is adopted in many learning systems, since it is
more mechanizable than the semantic notion of intensional coverage: Given a

background knowledge B, which possibly includes previously learned hypothe­
ses, we say that H and B intensionally cover an exampIe e E E, if and only if
B uH ubody(e) logically entails head(e) (B uH u body(e) F head(e)). In fact,
the implementation of the notion of intensional coverage requires a theorem
proVef, while a pattern matcher is enough for the extensional coverage.

The adoption of the notion of extensional coverage to check whether a
hypothesis H is complete and consistent can lead to a number of problems,
especially when E does not include ali positive and negative instances of PI'
P2'" ., Pn' for a given set of constant symbols. In fact, we can have hypotheses
that are extensionally but not intensionally consistent, as well as hypotheses
that are intensionally but not extensionally complete. Note that the notion of
extensional coverage causes troubles in the case of single predicates to be
learned and there is therefore ali the more reason for believing that it could be
a source of trouble in the case of learning many predicates. Indeed, when there
are several concepts to be learned, it is al so possible to have hypotheses that
are extensionally but not intensionally complete. This problem occurs when the
generated hypotheses are mutually recursive and causes a non-terminating
computation.

MutuaI recursion is another issue, which is independent from the adopted

notion of coverage. In fact, it requires a change in the solutions for the ordering
problem, since the definition of a concept Ci depends on the definition of
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another concept Cj' which, in its turn, depends on the very concept Ci that
cannot be completely defined. In this case, the dependency graph is cyclic, and
we have to consider the possibility of learning single c1auses instead of
complete predicate definitions before moving on to a dependent concept.
Obviously, the order in which single c1auses are learned markedly affects the
final result.

3.2. Inferring Concept Dependencies in Structural Domains

Finding the right order in which concepts have to be learned is a more difficult
task when we move on to structural domains. This is due to several reasons.

First, statistical methods for testing independence are suitable for attribute­
based representations and not for structural representations. Second, first­
order learning systems adopt stronger language/search biases than zeroth­
order learners, thus the right choice of the order in which concepts should be
learned is much more criticaI in the former systems than in the latter. Third, it
is possible to represent mutually recursive definitions, which makes depend­
ency graphs no longer acyclic. Here, we do not present any generai solution to
the problem of inferring the right order while learning multiple concepts in
structural domains, but we illustrate an ad hoc solution that seems to work well

on those images analysis and interpretation problems in which both symbolic
and numeric descriptions are available. We have successfully tried this ap­
proach in the domains of cartographic map interpretation (Barbanente et al.,
1992) and document understanding. The latter is described below.

3.2.1. The Problem of Document Understanding. According to interna­
tional standards (Horak, 1985), any document is characterized by two different
structures representing its spatial organization and its content: the layout and
the logical structure. The former concerns the organization of the document on
the presentation medium. Each page layout can be decomposed into a set of
layout objects that are rectangular areas, each of which is associated with a
portion of content. Ideally, each layout component should contain only text or
graphics, but sometimes it can contain both, owing to the difficulties of
automatically separating text from graphics in a document bitmap image.
Conversely, the logical structure is concerned with "meaning" of some layout
objects, such as sender or receiver in a business letter (see Figure 4.5a). The set
of possible "meanings" associated with the layout objects of a document is
named logical classes, while the layout objects associated with a logical c1ass
are called logical objects. The term document understanding denotes the process
of identification of logical objects in a document image.

In our previous works (Esposito et al., 1993a, b), we investigated the
possibility of using machine learning techniques for document understanding.
More precisely, given a set of page layouts of single-page documents belonging
to the same c1ass (e.g., business letters, scientific papers, or magazine indexes)
and assuming that the user-trainer has already labeled some layout objects
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Figure 4.5. a) Page layout of an Olivetti business letter. b) A V~, definite clause describing an
instance of the logical class date.

according to their meanings, the problem is that of learning rules that allow
logical components to be correctly identified on the basis only of layout
information. The training instances are symbolic descriptions of the page
layout of each document, together with information on the logical class of
some layout objects. Note that concepts to be learned may be related to each
other in some way (e.g., the receiver is reported above the date), thus we should
learn contextual rules in order to benefit from concept dependencies. For this
purpose, we adopted a first-order learning system, cali ed INDUBI/CSL
(Contextual Supervised Learner) developed at the University of Bari, Italy.

3.2.2. INDUBI/CSL. INDUBI/CSL, an extension of INDUBI and INDUBII
H (Esposito et al., 1994a), can learn contextual rules expressed as VL21 linked
clauses, which ha ve the same expressi ve power as Horn clauses. In VL21

(Michalski, 1980), the equivalent of an atom in predicate logic is the notion of
se/eetor or re/a tiana/ statement, which is written as:

[L = R]
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where L, named referee, is a function symbol with its arguments, and R, named
reference, is a set of values in the range of the function. A range can be an
unordered (nominai), totally ordered (linear), or partially-ordered set. The
semantics of a selector is the following: it is true if L takes one of the values in
R. A V L21 definite clause is an expression of the kind:

where f is a function symbol, t/s may be constants or variables, ). is a value
in the range of f, and cjJ(tl' t2, •.. , trn) is a conjunction of selectors whose
arguments contain the terms ti' t2, ... , trn• An example of VL21 definite clause
is given in Figure 4.5b.

The body of the clause describes the page layout of the document in Figure
4.5a, while the head defines the logical class of the layout object denoted by x6.

Definite clauses generated by INDUBI/CSL satisfy two constraints:

l. Ali variables in the head must occur in the body of the clause (that is,
the clause is range-restricted).

2. Clauses must be linked. A V L21 definite clause is lillked if ali its selectors
are. A selector is linked if at least one of its arguments is. An argument
of a selector is linked if either the selector is the head of the clause or

another argument of the same selector is linked.

Both training/testing examples and hypotheses are expressed as V L21

clauses, but there are some differences:

l. Each training/testing exampie is represented by a single ground V L21

clause.

2. Each hypothesis is expressed as a set of constant-free VL21 clauses having
the same head.

3. The reference of each selector in any training/testing example has one
value only.

4. In the examples, false predicates are omitted, while ali the attributes are
specified.

5. In the hypotheses, each omitted selector is assumed to be a function,
which takes on any value of its range.

6. Variables with different names must be bound to distinct constants

(Esposito et al., 1994b), since they are distinctly existentially quantified
(Michalski, 1980).

Note that ali these constraints on the languge of hypotheses are also valid for
the languge of background knowledge. In addition to the training examples
and the background knowledge. INDUBI/CSL requires a dependency graph
in order to perform the appropriate shift of langugc (procedure updatc
example_description) after ali concepts at the sa me level have been learned (see
Algorithm l).
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Algorithm 1. Learning Contextual Rules and Shift of Language

procedure learn_multiple_concepts(Examples, BK, {{ C~, ... , C~I}"'" {C'" ... , C~,}})

update_example_description(Examples. BK)
AIiLearnedRules: =0
for ;:=0 to l do

LearnedRulesSameLevel: =0
foreach c; in {C;, C~, ... , C~.} do

LearnedRules: = Separatcand_Conquer(Examples, C~)
LearnedRulesSameLevel: = LearnedRulesSameLevelu LearnedRules

endforeach

update _example_ descri ption( Examples, Learned RulesSame Level)
AIiLearnedRules: = Ali Learned Rulesu LearnedR ulesSameLevel
endfor

return AIILearnedRules

INDUBI/CSL implements a separate-and-conquer search strategy at the
high level, in order to construct a set of clauses (see Algorithm 2), while it
adopts a beam search at the low leve!, that is, for the construction of a single
clause. More precise!y, INDUBI/CSL starts with a positive example e+ and
generates a set Cons of at least m distinct generalizations, which are consistent
and cover e+. Such generalizations are extended-against and stored in MQ [see
Esposito et al. (1994a) for a detailed description of the extension-against
generalization rule]. Then, the best generalization is selected from MQ accord­
ing to a preference criterion, which takes into acount the number of positive
examples covered and the complexity of the generalization expressed by the
number of its selectors, as well as the total cost of each generalization. Then,
positive examples covered by the best generalization are removed from the set

Algorithm 2. High-Ievel Separate-and-conquer Strategy for Learning a Set of VL2, Definite
Clauses

procedure separate_and_conquer(Examples, Class)

E': = set of positive Examples belonging to Class

E-:=set of negative Examples belonging to Class
LearnedRules: = 0
while e#0 do

MQ:=0
randomly select e+ from E+

Cons: = Beam_Search_for _consistenLhypotheses(e+, E+, E-, m)

foreach generalization G in Cons do

MQ:=MQuextensioLagainst(G, E+, E-)
endforeach

Best:= FindBest(MQ)

LearnedRules: = LearnedRulesu{ Best}
E+:=E+ - Covers(Best, E+)

endwhile
return LearnedRules
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of positive examples and a new clause is generated, if the set of remaining
positive examples is not empty.

At the low level, INDUBI/CSL proceeds top-down, specializing the unit
clause:

[f(t l' t2,···, tn) = ),]+-

by adding one of the selectors in the positive example e + and turning constants
into variables. Thanks to the constraint on the binding of variables, it is
possible to turn distinct constants in the example description into distinct
variables. Only a subset of n selectors among ali selectors in the example are
considered: they are chosen according to the cost associated to each function
symbol in the referee and according to the arity of the function symbol, so
that the greater the arity, the better. The former criterion olTers the user a way
to express any preference for some Iiterals, while the latter criterion guarantees
that relations are not treated unfairly. Obviously, selectors that cause the
partial clause to become unlinked are not considered at alI. Ali specialized
VL21 definite clauses, which cover e+ and possibly other positive examples, are
ranked according to another preference criterion, which takes into account the
number of positive and negative examples covered and the complexity of the
clause, as well as the total cost. The first p generalizations are selected and
stored in a set PS. Consistent generalizations are removed from PS and stored
in Cons (see Algorithm 3).

To sum up, INDUBI/CSL adopts two generalization rules. during the
inductive learning process, the turning-constants-into-variables rule and thc
extension-against rule, and one specialization rule called adding-a-selector.
Moreover, when background knowledge expressed in the form of VL21 definite
clauses is available, INDUBI/CSL applies the elementary saturation operator

Algorithm 3. Low-Ievel Beam Search Strategy for Learning One VL21 Definite Clause

procedure Beam_Search_for_consistenLhypotheses(e+, E+. E-, m)

PS: = {[f(t 1,12"", Ip)=À]+--}

OldPS:=0
Cons:= 0
while PS",OldPS and IConsl";m do
OldPS:=PS

PS:=0

foreach VL21 generalization G in OldPS do
S: = chooscbesLlinked_selectors(e+ , G, n)

S: = turn_constantLinto_ variables(S)

PS: = PSuspecialize_G_by _adding_Lseiector _in_S(G,S)
endforeach

Cons: = Consu(consistent(PS)nrange-restricted(PS)

PS: = selecLbesLp_generalizations(PS)
foreach VL21 generalization G in CONS do

MQ: =MQuextension_against(G, E+, E-)

endforeach
endwhile
return C ons
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TABLE 4.1. Experimental Results with INDUBI/CSL: Independence Assumption
Rule/Run

123456Av. Errar

logo

O/OO/OO/OO/O%O/O0.0%
sender

O/O0/10/10/10/90/216.9%
rei

1/01131/01/11/40/214.3%
date

0/41/40/20/40/20/428.8%
receiver

2/1O/OO/O0/30/50/217.9%
signature

0/10/20/2O/OO/OO/O8.9%
body

1/02/02/10/20/11/220%
Total

4/64/103/61/111/211/1211%

described by Rouveirol (1992), before starting the learning process of ali
concepts. In particular, ali clauses in the background knowledge are repeatedly
matched against the training examples and ali their conclusions are added to
the examples in a forward-chaining way. The process ends when no new
conclusion expressed as a selector can be added to any training instance. The
added selectors are then considered by the procedure choose_besLlinked_
selectors in the low-level beam-search strategy, so that they can be selected
only if they appear useful.

It is worthwhile noting the INDUBIjCSL adopts the extensional notion of
coverage, but provides an answer to some of the related problems we discussed
in Section 3.1. Indeed, the problem of the generation of extensionally, but not
intensionally, consistent hypotheses is faced by updating the exampIe descrip­
tions every time ali concepts at the sa me level have been learned. Moreover,
there is no possibility of generating extensionally, but not intensionally,
complete hypotheses, since this could occur only with recursive definitions,
which cannot be generated by INDUBIjCSL. Finally, the combination of this
latter limit with the updating of the example descriptions prevents the system
from generating intensionally, but not extensionally, complete hypotheses.

3.2.3. Experimental Results and Inference of Dependencies. INDUBIj
CSL has been applied to the problem of document understanding. Several

TABLE 4.2. Experimental Results with INDUBI/CSL: Contextual Rules with Predefined
Order--Rule/Run

123456Av. Errar

lago

O/OO/OO/OO/OO/OO/O0.0%
sender

O/O0/10/10/10/90/115.6%
rei

2/00/10/10/11/10/210.6%
date

0/3O/O1/00/50/61/223.5%
receiver

0/1O/OO/O0/20/50/213.5%
signature

1/00/20/2O/OO/OO/O8.9%
body

0/12/02/10/20/11/118.3%
Total

3/52/43/50/111/222/89.0%
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experiments have been organized to verify whether learning contextual rules
leads to better results than learning under the independence assumption. For
this purpose, we considered a set of 30 business letters,l with 354 layout
objects. In each experiment, six different runs were made by randomly splitting
the set of documents into two subsets according to the following criteria:

• 20 documents for the training set; and
• IO documents for the test set.

Seven concepts have to be learned, namely, sender of the letter, receiver,

logotype, reference number (ref) , date. body, and signature. Obviously, not ali
layout objects are instances of one of these concepts: some layout components
have no logical class associated with them, while in some cases more than one

layout object in a document is associated with the same logical class.
INDUBI/CSL has been used for learning both contextual and non-contex­

tual rules. In the former case, we considered a linear dependency order, namely:

log ---> signature ---> body ---> sender ---> receiver ---> ref ---> date

Such an order is user-defined and can be partly explained in terms of spatial
reasoning. Indeed, when the logotype and the signature ha ve been recognized, the
understanding of the geometrically contiguous logical objects, namely, sender for
the logotype and body for the signature, should be easier. Following the same line
of reasoning, we expect recognition of the sender to help to identify the receiver,
which, together with the identification of logo, should help to locate the ref and,
finally, the date. Comparison ofTables 4.1 and 4.2 shows that there is a uniform

decrease in errar rate for ali the logical classes whèn the independence assumption
is not made. Glo,bally, the total average error is 2.0% lower for contextual rules
than for noncontextual rules. The learning time was the same in both experiments.

Since the dependency order is linear, we have also tried to discover the order
by means of statistics. The idea is the following: the accuracy of a classifier that
takes into consideration only the characteristics of each layout object can
provide information on how easily a logical object can be recognized without
taking into account other logica I objects in the context. We are aware that the
dependency order defined in this way may be just a rule of thumb, but, as we
will show later, it can help to identify at least the minimally dependent con­
cepts. The classifiers that we adopted for this third experimentation are Fisher's
linear discriminant functions (Hand, 1981), which take the following form:

q;(x) = v' x - vo
where:

• x is an M-dimensional feature vector representing an observation;

• v is a vector of M coefficients; and

• Vo is a constant term.

l Data are available via anonymous ftp at lhe UCI machine learning reposilory.
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TABLE 4.3. Experimental Results with INDUBI/CSL: Contextual Rules with Order

Deflned by the Dlscrlmlnant Analysls
Class/Run

123456Av. Error

logo

0100100100100100100.00%
sender

O/O0/10/10/10/90/216.9%
reI

1/00/10/10/21/00/29.2%
date

0/2O/O0/10/50/20/416.4%
receiver

0/1O/OO/O0/30/40/213.5%

signature

1/00/20/2O/OO/OO/O8.9%
body

0/12/02/11/20/10/220.0%
Total

2/42/42/61/131/160/128.7%

In order to find those logical components that can more easily be recognized
by means of layout information, the discriminant functions ha ve been applied
directly on a subset of numerical features describing each single layout object.
Such features result from previous phases of document processing, and concern
the coordinates of the centroid of an object, the height, width, and eccentricity
of a layout component, the number of black pixels in a layout object, and so
onoFor each logica I class Ci we computed the following coefficient:

/(j = (number of positive instances covered

+ number of negative instances not covered)

and we ordered the logical classes according to the decreasing value of Kj' Ties
are broken by preferring the class with the greater number of positive instances.
In the following, we list the different orderings obtained in the six experiments:

1. logo -+ re! -+date-+ body-+ signature-+ sender-+ recei ver

2. logo -+ re! -+ signature-+ date -+ sender -+ bod y-+ receiver

3. logo -+ signature -+ re! -+ body-+date -+ sender-+ recei ver

4. logo -+ re! -+ date -+ signature-+ sender-+ bod y -+ receiver

5. logo -+ sender -+ date-+ signature -+ re! -+ body -+ receiver

6. logo-+ sender -+ re! -+ date-+ signature -+ bod y -+ receiver

TabIe 4.3 shows the experimental results obtained by expIoiting the ordering
defined by the discriminant analysis. The idea of using statistical methods in
order to define the dependency graph seems to work well, since the average
error rate was slighty lower even than that obtained with the predefined order.
Only in two experiments were the results worse, while globally, the number of
commission errors decreased.

Finally, it is worthwhile noting that the results of the first two experiments
agree with those obtained with a different first-order learning system, cali ed
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FOCL (Pazzani and Kibler, 1992). Even in that case we have observed an

improvement in accuracy when the concept dependencies are considerd (Es­
posito et al., 1993a; Malerba, 1993): this result corroborates our opinion that
taking concept dependencies into account is important.

4. CONCLUSIONS

In this chapter we have criticized the assumption of concept independence
made by most of the well-known learning systems. Problems caused by the
independence assumption are particularly evident in at least three situations:
learning multiple attributes in attribute-based domains, learning multiple
predicates in inductive logic programming, and learning classification rules for
labeling problems. However, dropping the independence assumption raises
severa l issues in its turn, the most important of which is the definition of an
order in which concepts have to be learned.

When a dependency graph is given, it is possible to learn contextual rules
by performing a shift of language according to the level assigned to each single
concept in the dependency graph. On the contrary, when the user does not

know which concepts depend on which, statistical methods can help to
discover concept dependencies. In particular, statistical tests for independence,
such as X2, can help to find significant correlations between concepts, while
asymmetric measures or association, such as )., Goodman and Kruskal's !, and
Somer's D can help to define a direction of dependence between two variables.
Such a direction, however, simply establishes which variable can be more easily
predicted given the other, but does not say anything about the possible causaI
relationships between them. In order to infer causaI information from data,
ditferent methods have to be used, such as the one implemented in Pearl and
Verma's Inductive-Causation Algorithm.

Ali these approaches are appropriate for attribute-based domains, but no

easy solution is yet available for the case of structural domains. In this chapter
we have presented an ad hoc solution for a real-world problem: document
understanding. Experimental results in this domain confirm that by taking into
account concept dependencies, it is possible to improve the classification
accuracy. These encouraging results were obtained both when the order was
defined by the user and when it was found by using linear dicriminant
functions. In the latter case, the classification accuracy of a classifier that takes
into consideration only the numerica I characteristics of each layout object was
exploited in order to understand how easily a logica I component can be
recognized without taking into account other logica l components in the
context. This simple rule proved etfective not only for identifying the minimally
dependent concepts, but al so for suggesting the whole sequence in which
concepts should be learned.
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