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Abstract. A multitude of recent studies have repeatedly shown the ac-
curacy of deep neural models in several malware detection problems.
Although deep learning has recently achieved amazing results in cyber-
security, deep neural models remain complex models, which often pro-
duce non-transparent decisions, and which are vulnerable to adversarial
attacks. Hence, the evaluation of a deep neural model in cybersecurity
should include the analysis of the simplicity and vulnerability of the
model, in addition to its accuracy. In this study, we investigate how XAI
can disclose useful information concerning the robustness of the input
characteristics in deep neural models and how this knowledge can be
used in malware detection problems to pursue simpler deep neural mod-
els that are still accurate, as well as to fool deep neural models. In partic-
ular, AI defenders are interested in identifying the minimum amount of
input characteristics to train a simple deep neural model by preserving
high accuracy. AI attackers are interested in identifying the minimum
amount of input characteristics to perturb, in order to evade deep neural
models. We explore how simplicity can be realized in malware detection
problems by accounting for explanations of input characteristics, which
are produced with either a global XAI technique or a Mutual Information
analysis.
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ing · Malware Detection · Model Simplicity

1 Introduction

In the digital age the use of deep learning is one of the most powerful AI
paradigms for cybersecurity. Despite the amazing results recently achieved with
deep learning techniques in securing the digital infrastructures of modern or-
ganizations, the security of deep neural models can easily be jeopardized by
adversarial attacks. Adversarial learning [16] is the area of study that focuses on
identifying the vulnerabilities in artificial systems (comprising deep neural mod-
els). An adversary injects a slight perturbation into the input sample to increase
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the misclassification rate of the models. Such tainted samples are known as ad-
versarial samples. Several techniques to generate adversarial samples have been
described in the recent adversarial learning literature [7]. On the other hand,
in the game process of adversarial attacks and defense technologies, researchers
have also begun to pay attention to the research in the field of adversarial defense
(e.g., adversarial training or defensive distillation) [7].

eXplainable Artificial Intelligence, or XAI, is the area of study that aims to
enable humans to understand the decisions of artificial systems by producing
more explainable models while maintaining a good level of predictive accuracy.
Although deep learning techniques allow us to learn accurate classification mod-
els in several cybersecurity problems, these are commonly opaque models, that
are difficult to explain. On the other hand, easier-to-explain models are becoming
increasingly desirable in cybersecurity applications, to increase the stakeholders’
confidence. In addition, simplicity is considered an important characteristic in
cybersecurity problems since over-engineered deep neural models tend to in-
crease the likelihood of overfitting, decrease detection efficiency, and lowering
the explainability of the model’s output.

In this study, we explore how an XAI technique can help in achieving simpler
deep neural models by preserving, or even increasing, their accuracy. For this
purpose, we consider DALEX [8] that is a post-hoc, global XAI technique. DALEX
is used to provide measurable factors on which characteristics of the input space
influence the prediction of a cyber-attack and to what extent on a deep neural
model’s decisions. We use these explanations to identify the subspace of input
characteristics to train an accurate deep neural model for malware detection. In
addition, we analyse the performance of Mutual Information [19] as a decision
model-agnostic alternative to explain the relevance of input dimensions on an
observed output. Finally, we analyse the performance of both DALEX andMutual
Information for achieving simplicity also in the attacker perspective, that is, to
identify the subset of input dimensions to perturb, in order to fool a deep neural
model. To perturb data, we use FGSM [12], that is one of the most popular ad-
versarial sample generators. The experimental study is performed by considering
two, multi-class, malware detection problems.

The paper is organized as follows. The related work is presented in Section 2.
The adopted methods are described in Section 3, while the experimental setup
and the results are discussed in Section 4. Finally conclusions are drawn in
Section 5

2 Related work

With the boom of deep learning in cybersecurity, most of the recent research in
cybersecurity has been developed with the priority of providing accurate classi-
fications of cyber data [18]. On the other hand, adversarial learning has recently
gained growing attention also in the cybersecurity field by identifying potential
vulnerabilities of deep learning algorithms during learning and classification, de-
vising the corresponding attacks and evaluating their impact on the artificial
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systems, as well as proposing countermeasures to improve the security of deep
neural models against the considered attacks [7].

On the other hand, significant interest in the cybersecurity research commu-
nity has recently been observed in the development of both post-hoc explana-
tions, in which an XAI technique can be applied to already trained deep neural
models [20, 5] and intrinsic explanations, in which an XAI technique can be used
to allow the deep neural model to see the most important information during
the learning stage [3]. An in-depth examination of XAI studies in cyber-security
has been conducted in [9]. A taxonomy of XAI techniques used in cybersecurity
problems, as well as a novel black-box attack, have been proposed in [14], to
explore consistency, correctness and confidence security properties of gradient-
based XAI techniques.

Finally, a few recent cybersecurity studies have also started the investigation
of XAI in adversarial learning for both offensive [15] and defensive purposes [1].
Finally, in [2], XAI is used for selecting the dimensions of the input space to
gain accuracy with adversarial training. On the other hand, this idea of feature
selection is well-known in cybersecurity. For example, feature selection is used
as a crucial step to learn deep neural models for network intrusion detection in
[4, 13].

3 Methods

Let us consider a dataset D = {(xi, yi)}Ni=1 of N samples, where x ∈ X ⊆
Rd is a d-dimensional space of input characteristics that describe both normal
and malicious samples (e.g., malware apps), whereas y ∈ Y is the value of the
target variable Y . The target variable may assume K distinct classes: either
the class normal or one of the K − 1 distinct classes of a malware behaviour,
depending on those historically detected and labeled. The machine learning steps
performed in this study include: (1) Training a deep neural model – DNN – of
the multi-class classification function X 7→ Y . (2) The use of DALEX and Mutual
Information to measure the effect of input characteristics on target values. (3)
The use of FGSM to generate adversarial samples. We divide D into training
set and testing set. We train a DNN from the training set. We use either DALEX
or Mutual Information, to measure the importance of the input characteristics in
both the training set and the testing set. We use the information collected on the
importance of the input characteristics in the training set, to select the subset
of input characteristics for training a simpler, still accurate DNN. The accuracy
performance of the new DNN is evaluated on the testing set. In this case, our
intuition is that the less relevant characteristics may cause overfitting and lack
of generality. So, the removal of the less relevant characteristics from the input
space can foster the training of a simpler DNN that may also achieve higher
accuracy on unseen data. On the other hand, we use the information on the
importance of input characteristics in the testing set to select the subset of input
characteristics that may become the target of an attacker for the adversarial
sample generation. In this case, we would understand how measurements of
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input characteristic relevance can reveal model vulnerabilities that can become
the target of attackers.

3.1 DNN

We learn a multi-class deep neural model through a DNN architecture that con-
sists of three fully connected layers, one dropout layer and one batch normaliza-
tion layer, to mitigate the overfitting risk. The output probabilities are obtained
using the softmax activation function in the last layer. The Rectified Linear Unit
(ReLU) activation function is used in all the other hidden layers. This DNN ar-
chitecture has been recently used in cybersecurity problems [1, 2].

3.2 DALEX and Mutual Information

DALEX [8] is a post-hoc, XAI framework that implements techniques for under-
standing both the global and local structure of predictive black-box models. In
this study, we integrate the global, post-hoc explanation methodology that allows
us to explain the behavior of the DNN by measuring the global relevance of dif-
ferent input characteristics on DNN decisions. DALEX uses a permutation-based
variable-importance measurement to quantify the relevance of each characteris-
tic on the decisions of a model [11]. For each characteristic of the input space, its
effect is removed by permuting the values of the characteristic and the loss func-
tion compares the performance before and after. Intuitively, if a characteristic is
important, randomly permuting its values will cause the loss to increase. The
Mutual Information [19] is a data-driven, decision model-agnostic measurement
that quantifies the amount of information obtained about the target Y through

observing the input characteristic X, that is, MI(X,Y ) =
∑
y

∑
x

p(x, y)

p1(x)p2(y)
,

where p1(x) and p2(y) are the marginal distribution probabilities of x and y,
respectively. The Mutual Information is commonly used for feature scoring in
classification problems without using any classification model. The higher the
Mutual Information, the more important the input characteristic.

3.3 FGSM

FGSM (Fast Gradient Sign Method) [12] is one of the most popular adversarial
sample generators that is prone to catastrophic overfitting [6]. This is a white-box
gradient-based method that finds the loss (e.g., the cross-entropy) to apply to an
input sample, to make the decisions of the DNN less robust for a specific class.
FGSM is based on the gradient formula g(x) = ∇xJ(θ,x, y), where∇x represents
the gradient computed with respect to x, and J(θ,x, y) is the loss function of
the DNN. Specifically, FGSM identifies the minimum perturbation ϵ to add to
a training sample x to create an adversarial sample, in order to maximize J().
Therefore, given ϵ, for each (x, y) ∈ D, a new sample (xadv, y) ∈ A can be
generated so that xadv = x+ ϵsign(g(x)).
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Table 1: Data set description

Dataset #Training set #Testing set #Input characteristics #Classes

CICMalDroid20 8118 3480 40 5
CICMalMem22 41017 17579 55 4

4 Empirical Evaluation

We performed an experimental study with two malware detection datasets. The
datasets are described in Section 4.1. The implementation details of the proposed
method are reported in Section 4.2. The results are illustrated in Section 4.3.

4.1 Datasets

Two datasets were considered in the evaluation study: an android malware
dataset, namely CICMalDroid20 and a malware memory analysis dataset, namely
CICMalMem22. A description of characteristics of both datasets is reported in
Table 1. In particular, CICMaldroid20 dataset [17] includes samples of Android
apps collected from December 2017 to December 2018 from different sources
including VirusTotal service, Contagio security blog, AMD, MalDozer. It com-
prises apps labeled in five distinct classes: Adware, Banking malware, SMS mal-
ware, Riskware, and Normal. Each app is described by forty input character-
istics that represent the top-40 static and dynamic attributes extracted using
CopperDroid. Static characteristics mainly describe intents, permissions and
services, frequency counts for different file types, incidents of obfuscation and
sensitive API invocations. Dynamic characteristics describe behaviours broken
down into three categories of system calls, binder calls and composite behaviors.
CICMalMem22 dataset [10] is an obfuscated malware dataset that was created
to evaluate obfuscated malware detection methods. VolMemLyzer was used to
extract fifty-five malware characteristics from the memory dump. These charac-
teristics are classified into five categories: Malfind characteristics that allow the
identification of potential malicious executables; Ldrmodule that allow the iden-
tification of injected code into the system; Handle characteristics that allow the
analysis of the type of information stored in memory; Process view character-
istics that provide information of the list of processes; API-hook characteristics
that count the number of the most important API-hooks performed.This dataset
is made up by 50% malicious memory dumps and 50% benign memory dumps.
Malicious dumps belong to three malware classes: Trojan Horse, Spyware and
Ransomware. For each dataset, we adopted a stratified division of the datasets
into a training set (70%) and a testing set (30%).

4.2 Implementation Details

The code used in this experimental study was implemented in Python 3.9 with
Keras 2.7. 3 For each dataset, the hyper-parameters of the deep neural models

3 The source code is available at https://github.com/malikalessa/NFMCP.
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Table 2: Hyper-parameter search space

Hyper-parameter Search space

Mini-batch size {25, 26, 27, 28, 29 }
Learning rate [0.0001, 0.001]
Dropout [0,1]
# of neurons per hidden layer {25, 26, 27, 28, 29, 210 }

were optimized with the tree-structured Parzen estimator algorithm, using 20%
of the entire training set as a validation set. The search spaces of the hyper-
parameter optimization are reported in Table 2. The maximum number of epochs
was set equal to 150 and an early stopping approach was adopted. The early
stopping was based on the lowest loss on the same validation set considered
in the hyper-parameter optimization, in order to retain the best models. The
FGSM algorithm (as implemented in the Adversarial Robustness Toolbox library4)
was used to generate the adversarial samples. The adopted implementation of
FGSM allowed us to use a mask to decide which input characteristics must be
perturbed to generate adversarial samples. The DALEX Python package 1.2.05

was integrated to measure the global relevance of input characteristics.

4.3 Results

We evaluate the accuracy performance of deep neural models by measuring the
overall accuracy (OA), the average F1-score (MacroF1) and the weighted F1-score
(WeightedF1) of decisions produced on the testing set of both CICMalDroid20
and CICMalMem22. We start the analysis, by exploring the ranking of input
characteristics determined with both DALEX and Mutual Information on both
the training set and the testing set of each dataset. We proceed evaluating the
accuracy performance of the deep neural models trained with subsets of in-
put characteristics selected according to the ranking produced by both DALEX
and Mutual Information. Finally, we analyse the performance of FGSM used to
generate adversarial samples of testing sets by using both DALEX and Mutual
Information to identify subsets of input characteristics to perturb.

Input space analysis Figure 1 shows the relevance of the input characteristics
as it was measured with DALEX and Mutual Information on both the training set
and the testing set of CICMalDroid20 (Fig. 1a ) and CICMalMem22 (Fig. 1b ),
respectively. For each dataset, we consider the union of the top-10 input charac-
teristics, selected according to the ranking provided by both DALEX and Mutual
Information. We note that DALEX and Mutual Information return measurements
of the relevance of input characteristics that produce a different ranking of these
characteristics. This is an expected outcome as DALEX accounts for models’ de-
cisions on data, while Mutual Information is model decision-agnostic and fully

4 https://adversarial-robustness-toolbox.readthedocs.io/
5 https://github.com/ModelOriented/DALEX
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(a) CICMalDroid20 (b) CICMalMem22

Fig. 1: Relevance of the input characteristics measured with DALEX (D) and
Mutual Information (MI) on both the training set and the testing set of CICMal-
Droid20 (Fig. 1a ) and CICMalMem22 (Fig. 1b ), respectively. For each dataset,
the union of the top-10 input characteristics, selected according to the ranking
provided by both DALEX and Mutual Information, is selected.

data-driven. Notably, the ranks assigned by the Mutual Information analysis to
the input characteristics of both the training set and testing set are similar in
both datasets. Instead, the ranks assigned by DALEX to the input characteristics
of the training set and testing set are more similar in CICMalDroid20 than in
CICMalMem22. In particular, the deep neural model trained for CICMalDroid20
makes decisions on testing samples in a similar way to how it makes decisions on
training samples. Differently, the deep neural model trained for CICMalMem22
makes decisions on testing samples differently from how it makes decisions on
testing samples.

Selecting input characteristics for training deep neural models Fig-
ure 2 shows the accuracy performance of deep neural models trained in both
CICMalDroid20 and CICMalMem22 by using both DALEX and Mutual Info to
select input characteristics for fueling the training stage. We performed exper-
iments by varying the number of selected characteristics among 10, 20 and 30
in CICMalDroid20, 10, 20, 30, 40 and 50 in CICMalMem22 and we considered
the deep neural models trained with all input characteristics of both training
sets as baselines. The deep neural model trained with input characteristics se-
lected with DALEX systematically outperforms the deep neural model trained
with input characteristics selected with Mutual Information in CICMalDroid20.
Notably, in this dataset, the deep neural model trained with 20 out of the 40
original input characteristics selected with DALEX achieves an accuracy per-
formance comparable to that of the deep neural model trained with all input
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(a) CICMalDroid20
(OA)

(b) CICMalDroid20
(MacroF1)

(c) CICMalDroid20
(WeightedF1)

(d) CICMalMem22
(OA)

(e) CICMalMem22
(MacroF1)

(f) CICMalMem22
(WeightedF1)

Fig. 2: CICMalDroid20 and CICMalMem22: OA (axis Y, Figs. 2a and 2d),
MacroF1 (axis Y, Fig. 2b and 2e) and WeightedF1 (axis Y, Fig. 2c and ref-
fig:MalMem WeightedF1) of deep neural models trained by selecting the top-n
characteristics (axis X) of the original input space. The top-n characteristics are
selected with respect to relevance values of input characteristics measured with
DALEX and Mutual Information (MI). Baseline denotes the deep neural model
learned with all characteristics of the original input space.

characteristics. On the other hand, in CICMalMem22, the deep neural model
trained with 10 out of the 55 original input characteristics selected with DALEX
achieves higher accuracy than the deep neural model trained with all input char-
acteristics. The same is not observed by selecting 10 input characteristics with
Mutual Information. We must select at least 20 input characteristics with Mutual
Information to train a deep neural model that outperforms the deep neural model
trained with all input characteristics. In short, both DALEX and Mutual Infor-
mation allows us to select a subspace of input characteristics to learn a simpler
deep neural model that achieves the same accuracy or even better accuracy that
the deep neural model trained with all input characteristics. However, DALEX
outperforms Mutual Information in this task.

Selecting input characteristics for generating adversarial samples Fig-
ures 3 and 4 show the accuracy performance of the deep neural models trained
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with all characteristics from the training sets of both CICMalDroid20 and CIC-
MalMem22 and tested on the adversarial testing sets of the same datasets. For
each testing set, the adversarial testing set was produced by perturbing samples
with FGSM with ϵ = 0.001 and ϵ = 0.01. We used FGSM on the input characteris-
tics selected according to the ranking of characteristics determined on the testing
set with both DALEX and Mutual Information. We performed experiments by the
number of selected characteristics among 10, 20 and 30 in CICMalDroid20, 10,
20, 30, 40 and 50 in CICMalMem22 and we considered adversarial testings sets
constructed perturbing all input characteristics as baselines. Results show that,
in CICMalDroid20, DALEX is more effective than theMutual Information analysis
to allow attackers to identify sub-spaces of input characteristic to select for per-
turbing testing samples and fooling the deep neural model. On the other hand,
in CICMalMem22, the Mutual Information analysis helps more than DALEX the
attackers to understand which input characteristics to perturb to fool the deep
neural model. We explain this result by recalling that DALEX found two com-
pletely different rankings for the input characteristics of the training set and
testing set of MalMem22. This suggests that DALEX can actually disclose useful
knowledge for the attackers when it produces similar explanations of the deep
neural model decisions on both the data used for training the model and data
considered to fool the model.

5 Conclusion

In this paper, we illustrate a study that we have conducted to explore how a
global, post-hoc XAI technique can help in learning simpler deep neural models
by possibly gaining accuracy. The study is conducted in the field of malware
detection by exploring the performance of DALEX, that is a post-hoc XAI tech-
nique. We use DALEX to explain how input characteristics may condition output
decisions of deep neural models trained for malware detection and classification.
Specifically, we use decision explanations produced by DALEX to select the sub-
set of input characteristics that can allow us to train simpler deep neural models,
that preserve, or even gain, accuracy compared to deep neural models trained
with all input characteristics. In addition, we explore how DALEX can help at-
tackers in identifying the input characteristics to perturb with FGSM, in order to
fool a deep neural model. We describe an empirical study conducted considering
two benchmark malware datasets. In this study, we compare the performance
of the input characteristic ranking performed with DALEX to the ranking per-
formed with the Mutual Information analysis. The results show that DALEX helps
in training a simpler, more accurate deep neural models in both problems. How-
ever, DALEX helps attackers to identify the better subset of input characteristics
to perturb only when a similar ranking is retrieved on both the training data
and the testing data. As future work, we plan to extend this study to various cy-
bersecurity problems (e.g., network intrusion detection, review spam detection)
and various XAI techniques (e.g., SHAP).
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(a) OA, ϵ = 0.001 (b) MacroF1, ϵ = 0.001 (c) WeightedF1, ϵ = 0.001

(d) OA, ϵ = 0.01 (e) MacroF1, ϵ = 0.01 (f) WeightedF1, ϵ = 0.01

Fig. 3: CICMalDroid20: OA (axis Y, Figs. 3a and 3d), MacroF1 (axis Y, Figs. 3b
and 3b) and WeightedF1 (axis Y, Figs. 3c and 3f) of deep neural models trained
on the original training set and evaluated on the testing set perturbed using
FGSM with ϵ = 0.001 and 0.01. Perturbations are performed on the top-n input
characteristics selected according to relevance values measured with DALEX and
Mutual Information (MI). Baseline denotes the evaluation performed on the testing
set with the perturbation applied to all the 40 input characteristics.
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