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Abstract. Open-set recognition (OSR) is a more realistic approach than
traditional multiclass classification in many real-world scenarios where an
unforeseeable number of classes may arise at inference time. Specifically,
OSR aims to recognize whether an instance belongs to one of the classes
used for the training or not. In case it is, the instance is also categorized
accordingly. On the contrary, when not recognized, OSR labels it with a
generic class label indicating the rest of the world. Similarly to text clas-
sification, OSR approaches suffer from the curse of dimensionality and
feature reduction could be beneficial. In this paper, inspired by previous
evidence on text classification, we claim that Non-negative Matrix Fac-
torization (NMF) of the tf-idf term-document matrix can also improve
OSR accuracy on text data. Preliminary results on benchmark datasets
prove our claim is correct and paves the way for future developments.

Keywords: Open-set Recognition · Non-negative Matrix Factorization
· Machine Learning.

1 Introduction

The Open-set recognition (OSR) task extends traditional multiclass classifica-
tion. As the name suggests, OSR aims to recognize whether a given test instance
belongs to one of the classes used for the training and categorize it accordingly.
On the contrary, in cases where it is not recognized, OSR labels it with a generic
class label indicating the rest of the world. In a real-world scenario, where in-
stances belonging to an unforeseeable growing number of possible classes are
expected at inference time, gathering training instances for all of them may be
impractical or even impossible, thus making the training of a multiclass clas-
sifier infeasible. Furthermore, traditional multiclass classification assumes that
instances observed at inference time belong to the same classes seen at training
time. Therefore, in such cases, OSR is a favorable solution. Figure 1 gives an
intuitive idea of how OSR differs from ordinary classification by comparing their
decision boundaries: while in traditional classification, a model separates classes
with an open hyperplane, in OSR the goal is to find a tight margin around
known-class training instances, so that those far away from the boundaries can
be assigned to the generic class denoting the rest of the world. Therefore, adopt-
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Fig. 1: 2D decision boundary of a multiclass classifier (left) and OSR (right)

ing OSRs is essential for the practical deployment of the model that should be
able to accurately classify known-class instances while also effectively dealing
with unknown-class ones.

Similarly to multiclass classification, OSR can be applied to a variety of data
types, including high-dimensional data such as text. As such, OSR is subject to
the curse of dimensionality, a problem arising when the number of dimensions
(features) in a dataset increases. As the data dimensionality increases, the volume
of the space overgrows so that the available data become sparse, making it
difficult to catch statistically significant regularities in the data. To mitigate this
issue, dimensionality reduction techniques aim to map high-dimensional data to
a lower-dimensional space while preserving the nature of the original data.

Non-negative matrix factorization (NMF) has become a popular dimension-
ality reduction technique in recent years due to its parts-based, non-subtractive
interpretation of the learned basis. Informally, NMF builds a number of features,
each of them representing a part of the original data that can be combined to
recreate it (e.g., in the case of a face image, such parts can correspond to "nose",
"eyes" and so on). Given a non-negative data matrix V, NMF decomposes it into
two non-negative matrices, W and H, such that V = WH. NMF has been ef-
fectively used to factorize tf-idf weighted term-document matrices, prior to text
classification. In so doing, NMF analyzes the conceptual semantic space and,
consequently, reduces the dimensionality of tf-idf document vectors, ultimately
representing texts in terms of conceptual features.

In this paper, our main claim is that NMF approaches can improve open-set
recognition accuracy. Although previous studies [15] have shown that the local
conceptual semantic space generated based on NMF can result in better text
classification accuracy, as far as we can tell, there is no evidence that such a
result also holds in the open-set recognition scenario. Specifically, since OSRs
are trained on instances belonging to known classes and tested on both known
and unknown classes, we claim that conceptual features learned from NMF on
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known-class instances can significantly boost the recognition accuracy, even on
unforeseen classes. Guided by previous studies on text classification, we design
experiments on open-set recognition data to test this claim. The remainder of this
paper is organized as follows: Section 2 introduces the recent literature on open
set recognition and non-negative matrix factorization techniques and Section 3
introduces the basics notions. Then, Section 4 discusses the experimental results,
before concluding the manuscript in Section 5.

2 Related Works

In recent years, the open-set recognition problem gained momentum in both
the industrial community, which developed new OSR methodologies, and the
research community, which in its turn considered multiple applications of OSR to
real-world problems. This section recalls the main frameworks and applications
proposed in the literature.

Among the first open-set recognizers proposed in the literature, it is worth
mentioning the Extreme Value Machine (EVM) that models the probability dis-
tribution of the distances of each instance w.r.t. the decision margin [11]. Each
class decision boundary is then represented by a subset of training data called
extreme vectors. Further approaches are variants of support vector machines
based on the Weibull distribution [4,13]. In [12], the authors proposed an ap-
proach called Compact Abating Probability (CAP), where the class probability
of a test instance decreases according to the distance from the training instances
of the class. The learning algorithm establishes a threshold on the probability
value according to a CAP model based on a one-class SVM to reject far-away
test instances from the training ones and delegates the final decision to a further
CAP model based on the binary SVM and Extreme Value Theory.

Recently, with the growing interest in deep learning models, open-set recog-
nizers based on neural networks have been proposed. For instance, OpenGAN
has been one of the most promising models extending generative adversarial
networks, which augments the training set with synthetic data representing the
rest of the world, and as such not belonging to any training class, before train-
ing the model [6]. In [1], the authors use a neural network classifier to define
the boundaries between known-class instances and those belonging to unknown
classes by allowing the model to estimate the similarity between data and stored
knowledge. Additionally, the model determines a similarity value for unknown-
class instances. Further distance-based approaches based on a modified version
of the nearest neighbor classifier have been proposed [5]: for a given test instance,
the inference algorithm computes the distances w.r.t the two nearest neighbors
whose class labels differ. The algorithm compares the ratio between these dis-
tance values against a threshold: the test instance will have the class label of the
nearest neighbor only if the distance ratio exceeds the threshold.

Recent works combine the problem of open-set recognition with prototype
mining to generate tight boundaries between the known and unknowns thanks to
prototypes that determine intra-class features representations using prototypes
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instead of inter-class features) [9,14]. In particular, in [9], the authors focus
on the problem related to the sub-optimality of the prototypes and propose
an embedded-based approach to induce high-quality prototypes (according to
diversity and robustness criteria) optimizing accordingly the embedding space
to better discern known-class instances from those belonging to unknown classes.

Non-negative Matrix Factorization (NMF) is a paradigm for dimensionality
reduction that has gained popularity due to its ability to obtain parts-based
representation and enhance interpretability. NMF works by decomposing a non-
negative data matrix into two non-negative reduced matrices, allowing for the
discovery of patterns in high-dimensional datasets. There have been many de-
velopments and improvements to NMF algorithms in recent years.

Among the first NMF algorithms, we find those based on multiplicative ap-
proaches in which the reduced matrices are iteratively searched by multiplicative
updates. In particular, the Multiplicative Updates (MU) algorithm, proposed
in [7], is a well-known method that has many interesting features: it is simple to
implement and can be adapted to popular variants such as sparse Non-Negative
Matrix Factorization [10]. The MU algorithm has been extensively used to esti-
mate the basis and coefficient matrices in NMF problems under a wide range of
divergences and regularizers [16].

Alternative to multiplicative approaches, we found methods based on coor-
dinate descent, such as [2], based on hierarchical alternating least squares al-
gorithms. The coordinate descent approach to NMF involves adopting the idea
of sequential coordinate-wise descent to NMF to increase the convergence rate.
This approach has been shown to converge faster than well-known methods [8].

3 Basics

In this section, we separately state the NMF problem and the OSR problem,
before discussing how to empower OSR approaches with NMF feature reduction
capabilities. In the following, we will consider text corpora of n documents over
a dictionary of m distinct terms, so that we term the associate tf-idf term-
document matrix as V ∈ Rn×m. For simplicity, v[i,:] ∈ Rm refers to the i -th row
(document) vector from V .

3.1 Non-negative Matrix Factorization

Let V ∈ Rn×m be a real-valued non-negative matrix, and r ∈ N << min(n,m).
The r-rank NMF is the decomposition of V into the product of two non-negative
matrices W ∈ Rn,r and H ∈ Rr,m such that V = WH.

In practice, finding the exact decomposition of V is challenging, therefore
the equality constraint is relaxed into V ≃ WH. Furthermore, like many other
matrix factorization techniques, W and H are found by solving a constrained
optimization problem whose solution is found by minimizing the approximation
error, i.e. the Frobenius norm, between V and WH, that is:

argmin
W∈Rn×r,H∈Rr×m

1

2
∥V −WH∥2F
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subject to W ≥ 0 and H ≥ 0. Typically, the optimization problem is solved
by multiplicative algorithms where W and H, initially random, are iteratively
updated by minimizing the Frobenius norm. The algorithm halts when the Frobe-
nius norm converges or, as an alternative, when reaching the maximum number
of iterations.

3.2 Open-set Recognition

Let U be the universe of all the possible classes, K ⊆ U and U ⊆ U −K be the
subsets of known and unknown classes, resp. Let v ∈ Rn be a generic example
labeled as y ∈ (K ∪ U). Then, the OSR fosr : Rn −→ K ∪ {⊥} is a multiclass
classifier in |K| + 1 classes, mapping v to class fosr(v) = k where k ∈ K or
f(v) = ⊥, otherwise (where ⊥ is an auxiliary label representing unknown-class
membership).

Specifically, fosr is a function whose analytical form is unknown in ad-
vance and requires to be approximated from training data. In particular, the
foundational assumption behind OSR is that unknown-class examples never
arise in training data Dtrain = {(vi, yi)} ⊆ X × K but only in inference data
Dtest = {(vj , yj)} ⊆ X × (K ∪U). Consequently, learning an OSR model means
estimating fosr from Dtrain without prior knowledge of unknown classes U . The
resulting model is expected to correctly classify instances from Dtest, even those
belonging to unknown classes not seen in Dtrain, thus labeling them as ⊥. OSR
fosr is fitted by minimizing the sum of the empirical risk and the open-space
risk over Dtrain, as in the following:

fosr = argmin
f∈H

RO(f,Dtrain) + λRϵ(f,Dtrain)

where λ is a regularization term and H is the set of all possible OSRs that can
fit over Dtrain. The term Rϵ refers to the empirical risk over Dtrain (i.e., the
expected risk of incorrectly classify examples in Dtrain). Then, the term RO
refers the open-space risk over Dtrain and it is defined as:

RO(f,Dtrain) =

∫
O f(x)dx∫
S f(x)dx

Open-space risk assumes that i) the space far from data belonging to known
classes should be considered as open space O, and ii) that labeling any instance
in this space as an arbitrary known class naturally implies a risk that should
be minimized. It quantifies the relative volume of training instances from the
open space O classified as belonging to one known class y ∈ K, with respect
to the instances from the closed space S (i.e., Dtrain) classified as known-class
instances [3]: the more instances are classified as known classes in O, the higher
the open space risk. However, as instances belonging to unknown classes do not
occur in training, it is often difficult to quantitatively analyze open space risk.
Alternatively, the open-space O can be approximated by the set of points distant
at most d ∈ R from any other instance in Dtrain.
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3.3 Proposed approach

When used on text data, OSR algorithms recognize documents based on their
associated tf-idf document vectors. Instead, our intuition is to learn the OSR
using the reduced data representation resulting from the r-rank NMF on the
overall term-document matrix associated with Dtrain. To do so, documents vi
in Dtrain are juxtaposed as subsequent document vectors v[i,:] in the term-
document V ∈ Rn×m. Then, the matrix is factorized by computing W and H,
and fosr is learnt on top of W (instead of the whole matrix V ). By doing so, since
the NMF is computed on top of only documents from Dtrain, the OSR fosr is
still learnt on top of known-class documents only. However, this time, the learn-
ing procedure takes into account reduced representations of documents, that is
row vectors from W whose conceptual features are linear combinations, in the
basis provided by column vectors from H, of the original term vectors from V .

This way, the recognition capability of fosr is augmented, in the sense that it
should be able to recognize texts based on conceptual features provided by the
NMF. Because of this, document vectors v arriving at inference time, and pos-
sibly belonging to unknown classes not seen during training (as those in Dtest),
should be first transformed into the corresponding reduced vectors v̂ in terms
of the conceptual features. Only after this initial pre-processing, documents are
recognized by computing fosr(v̂) and the resulting label is returned.

4 Experiments

In this section, we present the results of a comparative evaluation between 2
competitor approaches: an OSR algorithm without NMF (baseline method) and
an OSR algorithm equipped with an NMF algorithm. Specifically, their perfor-
mance has been assessed on different publicly available datasets trying to answer
the following research questions:

– How does NMF affect the OSR accuracy when varying the rank?
– How does NMF affect the OSR accuracy when increasing the number of

unknown classes?

The experiments have been executed in Jupyterlab 4.0.1 environment, using
Scikit-learn 1.2.2 and running Python 3.11.3, provisioned as a pod on a Ku-
bernetes cluster. The pod was equipped with 3GB of RAM and was allowed to
utilize the 10% of a single Intel Xeon Gold 5220R CPU @ 2.20GHz.

4.1 Dataset

We considered two datasets: the Kaggle Legal Clauses dataset and the CUAD
dataset. Kaggle Legal Clauses is a publicly available dataset1 concerning the
1 https://www.kaggle.com/datasets/mohammedalrashidan/contracts-clauses-d
atasets
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Dataset LP K U #instances

Legal Clauses

LP1
interest, base-salary,
investment-company-act, taxes,
payment, investments

ownership-of-shares, compensation,
capitalization, loans, definitions,
headings

11475

LP2
whereas, entire, assignment,
representations, counterparts,
termination

severability, now, miscellaneous,
insurance, indemnification,
confidentiality

6382

CUAD

LP1
license-grant, audit-rights,
anti-assignment, cap-on-liability,
insurance, governing-law

revenue-profit-sharing,
post-termination-services,
minimum-commitment, exclusivity,
rofr-rofo-rofn, ip-ownership-assignment

6974

LP2
volume-restriction, warranty-duration,
covenant-not-to-sue, uncapped-liability,
parties

competitive-restriction-exception,
liquidated-damages,
non-transferable-license,
joint-ip-ownership,
no-solicit-of-employees

1488

Table 1: Learning problems over Legal Clauses and CUAD datasets

financial domain for supervised learning problems: each labeled instance is a
sentence extracted from financial contracts. The CUAD dataset2 was originally
designed for solving query-answering tasks. It consists of 510 text files and a
further CSV file with 510 rows and 83 columns. The CSV file associates docu-
ments, one per row (i.e., each row points to the content of a specific text file), to
questions, one per column. Specifically, for each of the 42 questions, the dataset
provides both i) the answer provided by human experts and ii) the list of sen-
tences contributing to a possible answer. In the experiments, we only considered
the sentences in the 41 columns not associated with answers given by human ex-
perts. This way, we annotated every sentence according to the respective column
header. After removing duplicate clauses, null values, and, in the case of CUAD,
also the columns with dates, and short sentences (with less than 10 words), the
resulting datasets contain, respectively, i) 21187 sentences labeled considering
42 classes in the case of Legal Clauses and ii) 25709 sentences labeled according
to 38 classes in the case of CUAD.

Since the NMF is too expensive to compute on a large number of instances,
adopting it on the whole dataset is impractical. Therefore, we repeated the ex-
periments on 2 different pre-defined subsets K and U , i.e. learning problems
(LP), from each dataset, as reported in Table 1). We first examined the distri-
bution of classes in each dataset. Then we created LP1 by including only the
top 6 most numerous classes in K and the next 6 in U . LP2 was created using
the third group of 6 most numerous classes as K and the following 6 classes as
U . For each learning problem, we sampled at most 250 instances per class.

4.2 Settings

We trained the OSR using 80% of the examples and used the remaining 20% as
a validation set. We fit the OSR using only observations of known classes and
evaluated the model on the entire validation set (including the unknown-class
instances). We considered the kNN version for open-set recognition proposed in
2 https://github.com/TheAtticusProject/cuad
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Fig. 2: F1-score of kNN and kNN+NMF over increasing NMF rank r on Legal
Clauses LP1, Legal Clauses LP2, CUAD LP1 and CUAD LP2 (left to right).

[5] both with the NMF (termed as kNN+NMF hereafter) and without NMF
(termed as kNN). In both cases, the algorithm required setting a threshold T
to decide about the class label for the test instance: we fixed T = 0.9. As for
kNN+NMF, the NMF has been randomly initialized (seed equal to 1) and we
subsequently increased the rank r from 5 to 50 by 5 at a time.

4.3 Accuracy for increasing NMF rank

Concerning the first research question, i.e. the effect of the rank of the matrix
resulting from the NMF on the accuracy, the OSR performance has been eval-
uated by adopting a multiclass classification macro-averaged (over the known
classes) one-vs-all F1-score. Figure 2 illustrates some of the trends.

An aspect worth mentioning is that, although rank varies between 5 and
50, we have also considered larger values up to 3000. In particular, for ranks
larger than 50, we observed a very rapid decreasing trend hitting an F1-score of
less than 0.4. We deem these results not interesting, and therefore we have not
included them in the plots, since a fair comparison should only consider ranks
around optimal values of r, which in our case fall between 5 and 50. Firstly, it is
straightforward to note that the F1-score of the kNN without applying NMF does
not depend on the rank r and, therefore, is constant on every considered dataset.
It ranges from 0.6 to more than 0.8. A more interesting case is instead observ-
able using kNN+NMF. Indeed, we note that kNN+NMF outperforms kNN, in
terms of F1 score, in 3 out of 4 cases. For these cases, the F1-score difference
is maximized at rank 50, 25, 15 for Legal Clauses LP2, CUAD LP1, and LP2,
respectively. In the considered rank range, we observe that the F1-score: i) has
a fluctuating trend in the case of Legal clauses LP1 and LP2, ii) rapidly drops
in the case of CUAD LP2 while it is almost constant in the case of CUAD LP1.
Complementarily, in 1 out of 4 cases, that is Legal Clauses LP1, the optimal
F1-score hit by kNN+NMF does never exceed the baseline kNN, which remains
more accurate. In this case, the sampling performed when selecting documents
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may have affected the results: the selected instances could not be representative
enough to build discriminative latent features for the known classes.

4.4 Accuracy on the increasing number of unknown classes

Concerning the second research question, we wanted to assess whether NMF-
equipped OSR is more accurate than a pure OSR approach over an ever-increasing
number of unknown classes. In particular, we compared the two OSR competi-
tors trained in the previous sections, on each considered dataset, by measuring
the i) F1-score, and ii) accuracy on unknown samples (AUS) defined as the ratio

tu
tu+fu of correctly recognized unknown-class instances (tu) to the total number
of those recognized by the model (tu + fu) (where fu is the number of false
unknown cases) on subsequent incremental variations of the validations sets.
Specifically, every variation was built by controlling the associated openness,
computed as [5]:

openness = 1−

√
|K|

|K ∪ U |

Openness is a complexity measure of a given dataset/learning problem, it gives
an idea of how heterogeneous data can be at inference time. Unfortunately, it can
only be assessed under controlled conditions due to the lack of available knowl-
edge about unknown classes in real-world scenarios. So, assessing model accu-
racy w.r.t. this dimension requires a proper preparation step to obtain datasets
with varying degrees of openness. To this purpose, we first removed instances
of the unknown class from the dataset for each learning problem, resulting in
a new dataset with an openness of 0: note that openness equal to 0, i.e. when
|U | = 0, implies a traditional multi-class classification problem. Stemming from
this dataset, we gradually built a new one adding instances of a given unknown
class, one class at a time, thus resulting in 6 variations of each learning problem.
The strategy is a non-exhaustive way to balance the complexity of dataset gener-
ation: multiple datasets for the same openness value with different combinations
of known/unknown classes are actually possible. Indeed, exhaustive approaches
to investigate the OSR accuracy w.r.t. the openness would require considering
the power set of U , which can be very large.

Figure 3 and 4 reports, for each learning problem, the F1 and AUS scores
for kNN and kNN+NMF one. Two expected results arise: i) consistently with
previous results from the OSR literature [5], the F1-score (Figure 3) and the AUS
4 exhibit a decreasing and increasing trend over the openness, respectively, and
ii) consistently with previous results from the NMF literature [15], in traditional
multiclass classification setting, that is at openness 0, the F1-score of kNN+NMF
is larger than kNN.

As for the F1 scores, it is evident that kNN+NMF exhibits a more rapid
decreasing trend than pure kNN, despite being more accurate. In particular, in
3 out of 4 datasets, despite the F1 drop, KNN+NMF still outperforms KNN
with a remarkable difference of even more than 0.20 on CUAD LP1 and LP2.
On the contrary, in 1 out of 4 cases, namely in Legal Clauses LP1, we noted an



10 Angelo Impedovo, Giuseppe Rizzo

Fig. 3: F1-score of kNN and kNN+NMF over increasing openness on Legal
Clauses LP1, Legal Clauses LP2, CUAD LP1 and CUAD LP2 (left to right).

Fig. 4: AUS of kNN and kNN+NMF over increasing openness on Legal Clauses
LP1, Legal Clauses LP2, CUAD LP1 and CUAD LP2 (left to right).

opposite situation: for openness values larger than 0.20, kNN+NMF does not
outperform kNN. As for the AUS scores, we observe that kNN+NMF always
outperforms kNN throughout the experiments, regardless of the openness. In
particular, the AUS improvement is considerably larger on learning problems
built from the CUAD dataset than those built from Legal Clauses. Therefore,
since kNN+NMF seems to be more accurate than kNN in correctly recognizing
unknown-class instances we deem kNN+NMF a favorable solution to kNN. When
jointly looking at these considerations, applying NMF in the context of OSR
suggests that NMF: i) may help to increase the ability to correctly recognize
known-class instances but only in cases with a limited openness, ii) improves the
ability to correctly recognize unknown-class instances at the price of limiting the
recognition accuracy on known-class instances.
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5 Conclusions

In this work, we have investigated the role of non-negative matrix factorization
as a dimensionality reduction approach for improving the accuracy of the open-
set recognition model on text data. Starting from previous results in the context
of multiclass classification, we claimed that NMF could improve the recognition
accuracy of OSR algorithms. To verify our claims, we adopted a widely known off-
the-shelf NMF algorithm as a data pre-processing step and for a state-of-the-art
OSR solution based on a modified version of the k-nearest neighbor algorithm.
We performed two comparative evaluations: the first one aimed at determining
the role of the NMF rank on the OSR accuracy over the known classes, while
the second one aimed at determining the accuracy of the proposed solution
involving a non-negative matrix factorization w.r.t. multiple scenarios whose
openness have been gradually increased. The evaluation showed that the NMF
rank affects the accuracy of OSR models on different datasets. In particular,
results have shown that NMF increases the OSR accuracy towards unknown-
class instances, making the approach more suitable for detecting outliers in an
open-set scenario, while it rapidly decreases the accuracy towards known-class
instances, making the approach only suitable within limited openness.

This research provides a preliminary insight into the role of dimensionality
reduction in the context of open-set recognition and it can be extended in several
ways. Firstly, we can extend the evaluation by considering further dimensionality
reduction methods. Secondly, we can consider further state-of-the-art OSRs, such
as EVMs, and NMF algorithms as well. Lastly, we can consider new datasets
or learning problems with a larger number of known/unknown classes to gain
further evidence.
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