
Neural Graph Revealers

Harsh Shrivastava and Urszula Chajewska

Microsoft Research, Redmond, USA
{hshrivastava,urszc}@microsoft.com

Abstract. Sparse graph recovery methods work well where the data
follows their assumptions, however, they are not always designed for
doing downstream probabilistic queries. This limits their adoption to
only identifying connections among domain variables. On the other hand,
Probabilistic Graphical Models (PGMs) learn an underlying base graph to-
gether with a distribution over the variables (nodes). PGM design choices
are carefully made such that the inference and sampling algorithms are
efficient. This results in certain restrictions and simplifying assumptions.
In this work, we propose Neural Graph Revealers (NGRs) which attempt
to efficiently merge the sparse graph recovery methods with PGMs into a
single flow. The task is to recover a sparse graph showing connections
between the features and learn a probability distribution over them at the
same time. NGRs use a neural network as a multitask learning framework.
We introduce graph-constrained path norm that NGRs leverage to learn a
graphical model that captures complex non-linear functional dependencies
between features in the form of an undirected sparse graph. NGRs can
handle multimodal inputs like images, text, categorical data, embeddings
etc. which are not straightforward to incorporate in the existing methods.
We show experimental results on data from Gaussian graphical models
and a multimodal infant mortality dataset by CDC.1

Keywords: Sparse Graph Recovery · Probabilistic Graphical Models.

1 Introduction and Related Work

Sparse graph recovery is an important tool to gain insights from data and is a
widely researched topic [8,14,17]. Graph recovery algorithms discover the feature
dependencies in the form of a sparse graph, SG ∈ RD×D, where SG is the
adjacency matrix over D features. Such graphs are useful for analyzing data
from various domains: obtaining gene regulatory networks from single-cell RNA
sequencing data [11,20,22], stock market data and automobile sensor networks
for navigation purposes [7]. Other interesting applications consist of studying
brain connectivity patterns in autistic patients [12], increasing methane yield in
the anaerobic digestion process [19], gaining insights from the infant-mortality
data by CDC [18] and multivariate timeseries segmentation [9]. These sparse
graphs can be directed, undirected or have mixed-edge types.
1 Software: https://github.com/harshs27/neural-graph-revealers

https://github.com/harshs27/neural-graph-revealers

2 Harsh Shrivastava and Urszula Chajewska

Many existing approaches make a simplifying assumption about the distribu-
tion in order to achieve sparsity [2,6,11]. Some use the deep unfolding technique
to use the existing optimization algorithm as an inductive bias for designing deep
learning architectures [15,16,12] but they all require supervision for learning.

We present an efficient algorithm, called Neural Graph Revealers (NGRs), that
aspires to learn the dependency graph and the distribution over features without
making any simplifying assumptions. Key contributions of this work are:
– Novel use of neural networks as a multi-task learning framework to model

functional dependencies jointly for all features that enables richer & complex
representation as compared to the state-of-the-art methods.

– Incorporate multimodal features like images, categorical data or embeddings.
– Training is unsupervised which facilitates and adoption to new domains.
– Efficient and scalable approach that can handle large number of features.
– Once learned, the NGR architecture becomes an instance of a Neural Graphical

Model [18] and can be used for downstream probabilistic reasoning tasks.
Related Methods. Fig. 1 is an attempt to categorize different methods to

Fig. 1: Graph Recovery approaches. Neural Graph Revealers (NGRs) lie under
the regression based algorithms. The algorithmsb listed here are representative of the
sub-category and the list is not exhaustive and are discussed extensively in [17].

recover graphs. We primarily focus on methods developed for undirected graphs.
We consider the input data X ∈ RM×D with D features and M samples. For
each of the D features, the Regression based formulation fits a regression function
with respect to all the other features, Xd = fd(X{D}\d)+ ϵ, where ϵ is an additive
noise term. After fitting the regression, based on the choice of functions f ′

ds, the
algorithms determine the dependency of the features. These approaches have been
very successful for the task of recovering Gene Regulatory Networks. For instance,
GENIE3 [24] modeled each fd to be random forest model and GRNBoost2 [11]
combined random forests with gradient boosting technique to achieve superior
performance among others [1]. Then, neural network based representation like
GRNUlar [22] were developed, which also utilized the idea of using NNs as
a multitask learning setup. This method is architecturally quite close to our

Neural Graph Revealers 3

formulation, although the major difference with NGRs is that GRNUlar needs
supervision for training. Most of these methods were developed for numerical
input and it is not straightforward to extend them for multimodal features.
NGRs on the other hand provide a flexible approach to model multimodal inputs.

2 Neural Graph Revealers

We assume we are given the input data X with D features and M samples.
The task is to recover a sparse graph represented by its adjacency matrix form
SG ∈ RD×D. In the recovered undirected graph obtained by any regression based
approach, each feature or graph node is a function of its immediate (one-hop)
neighbors, as shown in Fig. 2(right). In this section, we describe our proposed
NGRs along with its potential extensions.

Fig. 2: Workflow of NGRs. (left) We start with a fully connected Neural Network (MLP
here) where both the input and output are the given features x′

is. Viewing NN as a
multitask learning framework indicates that the output features are dependent on all the
input features in the initial fully connected setting. (middle) The learned NGR optimizes
the network connections to fit the regression on the input data as well as satisfy
the sparsity constraints, refer Eq. 2. If there is a path from the input feature to an
output feature, that indicates a dependency, potentially non-linear, between them. The
bigger the size of NN (number of layers, hidden unit dimensions) the richer will be the
functional representation. Note that not all the weights of the MLP (those dropped
during training in grey-dashed lines) are shown for the sake of clarity. (right) The sparse
dependency graph between the input and output of the MLP reduces to the normalized
weight matrix product Sg = norm (|W1| × |W2|).

The architecture of NGR is an MLP that takes in input features and fits a
regression to get the same features as an output, shown in Fig. 2(left). We start
with a fully connected network. Some edges are dropped during training. We
view the trained neural network as a glass-box where a path to an output unit
(or neuron) from a set of input units means that the output unit is a function of
those input units.

In order to obtain a graph, for every feature Xd, we want to find the most
relevant features that have a direct functional influence on Xd. This task becomes
increasingly complex as we need to evaluate all possible combinations which can
be computationally tedious. Fitting the regression of NGRs, refer Fig. 2(middle),

4 Harsh Shrivastava and Urszula Chajewska

can be seen as doing multitask learning that simultaneously optimizes for the
functional dependencies of all the features.

Main design challenges to consider while fitting the NGR regression are:
(A) How to avoid self-dependencies among features, eg. Xd → Xd,∀d ∈ {D}?
(B) How do we efficiently induce sparsity among the paths defined by the MLP?

2.1 Optimization

We denote a NN with L number of layers with the weightsW = {W1,W2, · · · ,WL}
and biases B = {b1, b2, · · · , bL} as fW,B(·) with non-linearity not mentioned ex-
plicitly. In our implementation, we experimented with multiple non-linearities
and found that ReLU fits well with our framework. Applying the NN to the input
XD evaluates the following mathematical expression, fW,B(XD) = ReLU(WL ·
(· · · (W2 · ReLU(W1 ·XD + b1) + b2) · · ·) + bL). The dimensions of the weights
and biases are chosen such that the neural network input and output units are
equal to D while the hidden layers dimension H remains a design choice. In our
experiments, we found a good initial choice of H = 2|D|, then eventually based
on the loss on validation data, one can adjust the dimensions.

Our task is to design the NGR objective function such that it can jointly
discover the feature dependency graph constraints (A) & (B) along with fitting
the regression on the input data. We observe that the product of the weights
of the neural networks Snn =

∏L
l=1|Wl| = |W1| × |W2| × · · · × |WL| gives us

path dependencies between the input and the output units. We note that if
Snn[xi, xo] = 0 then the output unit xo does not depend on input unit xi.

Graph-constrained path norm. We introduce a way to map NN paths to
a predefined graph structure. Consider the matrix Snn that maps the paths from
the input units to the output units as described above. Assume we are given a
graph with adjacency matrix Sg ∈ {0, 1}D×D. The graph-constrained path norm
is defined as Pc =

∥∥Snn ∗ Sc
g

∥∥
1
, where Sc

g is the complement of the adjacency
matrix Sc

g = JD−Sg with JD ∈ {1}D×D being an all-ones matrix. The operation
Q ∗ V represents the Hadamard operator which does an element-wise matrix
multiplication between the same dimension matrices Q & V . This term is used
to enforce penalty to fit a particular predefined graph structure, Sg.

We use this formulation of MLPs to model the constraints along with finding
the set of parameters {W,B} that minimize the regression loss expressed as the
Euclidean distance between XD to fW,B(XD). Optimization becomes

argmin
W,B

M∑
k=1

∥∥Xk
D − fW,B(X

k
D)

∥∥2
2
, s.t. sym(Snn) ∗ Sdiag = 0 (1)

where, sym(Snn) =
(
∥Snn∥2 + ∥Snn∥T2

)
/2 converts the path norm obtained by

the NN weights product, Snn =
∏L

l=1|Wl|, into a symmetric adjacency matrix
and Sdiag ∈ RD×D represents a matrix of zeroes except the diagonal entries that
are 1. Constraint (A) is thus included as the constraint term in Eq. 1. To satisfy
the constraint (B), we include an ℓ1 norm term ∥sym(Snn)∥1 which will introduce

Neural Graph Revealers 5

sparsity in the path norms. Note that this second constraint enforces sparcity of
paths, not individual weights, thus affecting the entire network structure.

We model these constraints as Lagrangian terms which are scaled by a log
function. The log scaling is done for computational reasons as sometimes the
values of the Lagrangian terms can go very low. The constants λ, γ act as a
tradeoff between fitting the regression term and their corresponding constraints.
The optimization formulation to recover a valid graph structure becomes

argmin
W,B

M∑
k=1

∥∥Xk
D − fW,B(X

k
D)

∥∥2
2
+ λ ∥sym(Snn) ∗ Sdiag∥1 + γ ∥sym(Snn)∥1 (2)

where we can optionally add log scaling to the structure constraint terms.
Essentially, we start with a fully connected graph and then the Lagrangian
terms induce sparsity in the graph. Alg. 1 describes the procedure to learn the
NGR architecture based on optimizing the Eq. 2. We note that the optimization
and the graph recovered depend on the choices of the penalty constants λ, γ.
Since our loss function contains multiple terms, the loss-balancing technique
introduced in [13], can be utilized to get a good initial value of the constants.
Then, while running optimization, based on the regression loss value on a held-out
validation data, the values of penalty constants can be appropriately chosen.

2.2 Modeling multi-modal data

Algorithm 1: Learning NGRs

Function NGR-training(X):
fW0 ← Fully connected MLP
For e = 1, · · · , E do

Xb ← X (sample a batch)
L =∑M

k=1

∥∥∥Xbk
D − fW,B(Xbk

D)
∥∥∥2

−λ ∥sym(Snn) ∗ Sdiag∥1
−γ ∥sym(Snn)∥1

We,Be ← backprop L with
Adam optimizer

{WE} ← fE
W,B

G ← sym
(∏L

l=1|WE
l |

)
return G, fWE

It is common to encounter multi-
modal data in real-world datasets.
For instance, ICU patient records
can have information about body
vitals (numerical, categorical),
nurse notes (natural language)
and maybe associated X-rays (im-
ages). In this section, we pro-
pose two different ways to include
multi-modal input data in the
NGR formulation.

(I) Using projection modules.
Fig. 3 gives a schematic view of
including projection modules to
the base architecture described in
Fig. 2. W.l.o.g. we can consider
that each of the D inputs is an
embedding in xi ∈ RI space. For example, given an image, one way of getting
a corresponding embedding can be to use the latent layer of a convolutional
neural network based autoencoder. We convert all the input xi nodes in the
NGR architecture to hypernodes, where each hypernode contains the embedding
vector. Consider a hypernode that contains an embedding vector of size E and
if an edge is connected to the hypernode, then that edge is connected to all

6 Harsh Shrivastava and Urszula Chajewska

the E units of the embedding vector. For each of these input hypernodes, we
define a corresponding encoder embedding ei ← enci(xi),∀ei ∈ RE , which can
be designed specific to that particular input embedding. Similarly, we apply the
encoder modules to all the xi hypernodes and obtain the ei hypernodes. Same
procedure is followed at the decoder end, where xi ← deci(di),∀di ∈ RO. The
NGR graph discovery optimization reduces to discovering the connectivity pattern
using the path norms between hypernodes ei’s and di’s. A slight modification
to the graph-constrained path norm is needed to account for the hypernodes.
The Sdiag term will now represent the connections between the hypernodes,
so Sdiag ∈ {0, 1}DE×DO with ones in the block diagonals. We can include the

Fig. 3: Multi-modal data handling with Projection modules. The input X can be one-hot
(categorical), image or in general an embedding (text, audio, speech and other data
types). Projection modules (encoder + decoder) are used as a wrapper around the
NGR base architecture. The architecture of the projection modules depends on the input
data type and users’ design choices. Note that the output of the encoder can be more
than 1 unit (e1 can be a hypernode) and the corresponding adjacency matrix Sdiag of
the graph-constrained path norm can be adjusted. Similarly, the decoder side decoder
side of the NGR architecture is updated. The remaining details are similar to Fig. 2

projection modules in the regression term of the NGR objective, while the structure
learning terms will remain intact

argmin
W,B,proj

M∑
k=1

∥∥Xk
D − fW,B,proj(X

k
D)

∥∥2
2
+ λ ∥sym(Snn) ∗ Sdiag∥1 + γ ∥sym(Snn)∥1

(3)
where the proj are the parameters of the encoder and decoder projection.

(II) Using graph-constrained path norm (GcPn). Fig. 4 shows that we can
view the connections between the D hypernodes of the input embedding xi ∈ RI

(where I is the dimensionality of the input) to the corresponding input of the
encoder layer ei ∈ RE (with E being the dimensionality of the embedding) as
a graph. We represent each input layer to the encoder layer connections by
Senc ∈ {0, 1}DI×DE , where there is a Senc[xi, ej] = 1 if the (xi, ej) hypernodes
are connected. So, if we initialize a fully connected neural network (or MLP)
between the input layer and the encoder layer, we can utilize the GcPn penalty

Neural Graph Revealers 7

function to map the paths from the input units to the encoder units to satisfy
the graph structure defined by Senc. Similar exercise is replicated at the decoder
end to obtain Sdec. This extension of the GcPn to multi-modal data leads us to
the following Lagrangian based formulation of the optimization objective

argmin
Wenc,W,B,Wdec

M∑
k=1

∥∥Xk
D − fWenc,W,B,Wdec(X

k
D)

∥∥2
2
+ λ ∥sym(Snn) ∗ Sdiag∥1 (4)

+ γ ∥sym(Snn)∥1 + η ∥sym(Se
nn) ∗ Senc∥1 + β

∥∥sym(Sd
nn) ∗ Sdec

∥∥
1

where fWenc,W,B,Wdec(·) represents the entire end-to-end MLP including the
encoder and decoder mappings, Se

nn =
∏Le

l=1|Wl| = |W1| × |W2| × · · · × |WLe |
captures the path dependencies in the encoder MLP with Le layers, Sd

nn =∏Ld

l=1|Wl| = |W1| × |W2| × · · · × |WLd | captures the path dependencies in the
decoder MLP with Ld layers. The Lagrangian constants λ, γ, η, β are initialized
in the same manner as outlined in Sec. 2.1. We note the advantage of using the
GcPn penalties to enable soft enforcing of the path constraint requirements
between the input and output units of the neural networks. We recommend
the GcPn based approach (II) as the implementation is straightforward and it is
highly scalable and can handle large embedding sizes.

Fig. 4: Multi-modal data handling with Graph-constrained path norm. W.l.o.g. we
consider an input X to be embeddings that can come from text, speech and other data
types. We extend the idea of applying GcPn to the encoder MLP and the decoder MLP.
We initilialize a fully connected MLP and then using the GcPn penalties, we capture the
desired input to output unit path dependencies after optimizing the Eq. 4. NN nodes
containing embeddings are shown as hypernodes. We use the concept of a hypernode
to convey that all units of the embedding vector within the hypernode are considered
a single unit when deciding the edge connections defining a graph. The encoder and
decoder MLPs are used as a wrapper around the NGR base architecture. The remaining
details are similar to the ones described in Fig. 2.

2.3 Representation as a probabilistic graphical model

Once the sparse graph is recovered, the learned architecture of NGR represents
functional dependencies between the features. A beneficial next step for wider

8 Harsh Shrivastava and Urszula Chajewska

adoption will be the ability to model the entire joint probability distribution of
the features. This type of representation of the functional dependencies based on
neural networks has been recently explored in [18] and is calle Neural Graphical
Model (NGM). It is a type of a Probabilistic Graphical Model that utilizes neural
networks and a pre-defined graph structure between features to learn complex
non-linear underlying distributions. Additionally, it can model multi-modal data
and have efficient inference and sampling algorithms. The inference capability
can be used to estimate missing values in data. The learned NGR model can be
viewed as an instance of an NGM.

3 Experiments

3.1 Learning Gaussian Graphical Models

We explored the NGR’s ability to model Gaussian Graphical Models (GGM). To
create a GGM, we used a chain-graph structure and then defined a precision
matrix over it by randomly initializing the entries U(0.5, 1) with random signs.
The diagonal entries of the precision matrix were chosen such that it is positive
semi-definite. Samples were obtained from the GGM and were used as input to
the NGR for recovering the underlying graphical model. Fig. 5 shows the GGM
and the corresponding trends discovered after fitting a NGR. We used a NGR with a
single hidden layer and its dimension H = 100. Table 1 shows the graph recovery
results by running NGR on varying number of samples obtained using the Gaussian
graphical model. As expected, the results improve as we increase the number of
samples and thereby NGRs are capable of representing Gaussian graphical models.

Fig. 5: Modeling GGMs using NGRs. (left) The Conditional Independence graph [17]
for the chain structure used to generate the data. Positive partial correlations between
the nodes are shown in green, while the negative partial correlations in red. These
correlations show direct dependence or, in other words, the dependence is evaluated
conditioned on all the other nodes. (middle, right) Pairwise dependence functions
learned by the NGR. We observe that the NGR slopes match the trend in the GGM graph.
This shows that the dependency plots learned comply with the desired behaviour as
shown in the color of the partial correlation edges.

Neural Graph Revealers 9

Table 1: The recovered CI graph from NGR is com-
pared with the ground truth CI graph defined by
the underlying GGMs precision matrix with D = 10
nodes, chain graph as shown in Fig. 5. Area under
the ROC curve (AUC) and area under the precision-
recall curve (AUPR) values for 5 runs are reported.

Samples AUPR AUC
100 0.34± 0.03 0.67± 0.05
500 0.45± 0.10 0.79± 0.03
1000 0.63± 0.11 0.90± 0.03

3.2 Infant Mortality data analysis

The infant mortality dataset we used is based on CDC Birth Cohort Linked Birth
– Infant Death Data Files [23]. It describes pregnancy and birth variables for
all live births in the U.S. together with an indication of an infant’s death (and
its cause) before the first birthday. We used the data for 2015 (latest available),
which includes information about 3,988,733 live births.

Fig. 6: Graphs recovered for the Infant Mortality 2015 data. (left) The Bayesian network
graph learned using score-based method, (middle) the CI graph recovered by uGLAD and
(right) the NGR graph. For NGR, we applied a threshold to retain top relevant edges.

Recovered graphs. We recovered the graph strucure of the dataset using NGR,
uGLAD [19] and Bayesian network package bnlearn [14] with Tabu search and AIC
score. The graphs are shown in Fig. 6. All variables were converted to categorical
for bnlearn structure learning and inference as it does not support networks
containing both continuous and discrete variables. In contrast, uGLAD and NGRs are
both equipped to work with mixed types of variables and were trained on the
dataset prior to conversion. It is interesting to observe that although there are
some common clusters in all three graphs, each graph has a different extent of
inter-cluster connections. The three different graph recovery methods are based
on different distribution assumptions, training methodology, way of handling
multimodal data, which leads to different connectivity patterns. This dataset
and corresponding BN and uGLAD graph analysis are discussed in [18].

NGR architecture details. Since we have mixed input data types, real and
categorical data, we utilize the NGR multimodal architecture’s neural view given
in Fig. 4. We used a 2-layer neural view with H = 1000. The categorical input
was converted to its one-hot vector representation and added to the real features

10 Harsh Shrivastava and Urszula Chajewska
Methods Gestational age Birthweight

(ordinal, weeks) (continuous, grams)
MAE RMSE MAE RMSE

Logistic Regression 1.512± 0.005 3.295± 0.043 N/A N/A
Bayesian network 1.040 ± 0.003 2.656± 0.027 N/A N/A

EBM 1.313± 0.002 2.376± 0.021 345.21 ± 1.47 451.59 ± 2.38

NGM w/full graph 1.560± 0.067 2.681± 0.047 394.90± 11.25 517.24± 11.51

NGM w/BN graph 1.364± 0.025 2.452± 0.026 370.20± 1.44 484.82± 1.88

NGM w/uGLAD graph 1.295± 0.010 2.370 ± 0.025 371.27± 1.78 485.39± 1.86

NGR 1.448± 0.133 2.493± 0.100 369.68± 1.14 483.96± 1.56

Table 2: Comparison of predictive accuracy for gestational age and birthweight.

Methods Survival Cause of death
(binary) (multivalued, majority class frequency 0.9948)

micro-averaged macro-averaged
AUC AUPR Precision Recall Precision Recall

Logistic Regression 0.633± 0.004 0.182± 0.008 0.995± 7.102e-05 0.995± 7.102e-05 0.136± 0.011 0.130± 0.002

Bayesian network 0.655± 0.004 0.252± 0.007 0.995± 7.370e-05 0.995± 7.370e-05 0.191± 0.008 0.158± 0.002

EBM 0.680± 0.003 0.299 ± 0.007 0.995± 5.371e-05 0.995± 5.371e-05 0.228± 0.014 0.166± 0.002

NGM w/full graph 0.721± 0.024 0.197± 0.014 0.994± 1.400e-05 0.994± 1.400e-05 0.497 ± 7.011e-06 0.500 ± 1.000e-06
NGM w/BN graph 0.752± 0.012 0.295± 0.010 0.995± 4.416e-05 0.995± 4.416e-05 0.497 ± 2.208e-05 0.500 ± 1.000e-06

NGM w/uGLAD graph 0.726± 0.020 0.269± 0.018 0.995± 9.735e-05 0.995± 9.735e-05 0.497 ± 4.868e-05 0.500 ± 1.000e-06
NGR 0.770 ± 0.009 0.269± 0.030 0.995 ± 3.357e-05 0.995 ± 3.357e-05 0.497 ± 1.678e-05 0.500 ± 1.000e-06

Table 3: Comparison of predictive accuracy for 1-year survival and cause of death.
Note: recall set to zero when there are no labels of a given class, and precision set to
zero when there are no predictions of a given class.

which gave us roughly ∼ 500 features as input. NGR was trained on the 4 million
data points with D = 500 using 64 CPUs within 4 hours.

Inference accuracy comparison. Infant mortality dataset is particularly chal-
lenging due to the data skewness. For instance, the cases of infant death during
the first year of life are rare compared to cases of surviving infants. Getting
good performance on imbalanced data is a challenging problem and multiple
techniques have been developed to assist existing learning algorithms [5,21,3]. We
do not report results on applying these techniques as it would be out of scope for
this work. Since NGR becomes an instance of a Neural Graphical Model, we also
include comparisons of NGMs that use base graphs obtained from Bayesian net-
works, CI graph from uGLAD and also show the results on using a fully connected
graph which basically avoids using any internal graph structure. We compared
prediction for four variables of various types: gestational age (ordinal, expressed
in weeks), birthweight (continuous, specified in grams), survival till 1st birthday
(binary) and cause of death (’alive’, 10 most common causes of death with less
common grouped in category ’other’ with ’alive’ indicated for 99.48% of infants).
We compared with other prediction methods like logistic regression, Bayesian
networks, Explainable Boosting Machines (EBM) [4,10] and report 5-fold cross
validation results.

Tables 2 and 3 demonstrate that NGR models are more accurate than logistic
regression, Bayesian Networks and on par with EBM models for categorical and
ordinal variables. They performance is similar to the NGM models with different
input base graphs highlighting that learning a NGR graph is can help us gain new
insights. We note an additional advantage of NGRs and NGMs in general: we just
need to train a single model and their inference capability can be leveraged to

Neural Graph Revealers 11

output predictions for multiple tasks listed here. For the case of EBM and LR
models, we had to train a separate model for each outcome variable evaluated.

4 Conclusions

We address the important problem of doing sparse graph recovery and querying
the corresponding graphical model. The existing graph recovery algorithms
make simplifying assumptions about the feature dependency functions in order
to achieve sparsity. Some deep learning based algorithms achieve non-linear
functional dependencies but their architecture demands too many learnable
parameters. Neural Graph Revealers leverage neural networks as a multitask
learning framework to represent complex distributions and also introduces the
concept of graph-constrained path norm to learn a sparse graphical model. The
trained model can be used for probabilistic inference. Our experiments on infant
mortality dataset demonstrate usefulness of NGRs to model complex multimodal
input real-world problems.

References

1. Aluru, M., Shrivastava, H., Chockalingam, S.P., Shivakumar, S., Aluru, S.: EnGRaiN:
a supervised ensemble learning method for recovery of large-scale gene regulatory
networks. Bioinformatics (2021)

2. Belilovsky, E., Kastner, K., Varoquaux, G., Blaschko, M.B.: Learning to discover
sparse graphical models. In: International Conference on Machine Learning. pp.
440–448. PMLR (2017)

3. Bhattacharya, S., Rajan, V., Shrivastava, H.: ICU mortality prediction: a classifica-
tion algorithm for imbalanced datasets. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 31 (2017)

4. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible
models for healthcare: Predicting pneumonia risk and hospital 30-day readmission.
In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp. 1721–1730. ACM (2015)

5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research 16,
321–357 (2002)

6. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with
the graphical lasso. Biostatistics 9(3), 432–441 (2008)

7. Hallac, D., Park, Y., Boyd, S., Leskovec, J.: Network inference via the time-varying
graphical lasso. In: Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. pp. 205–213 (2017)

8. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The
combination of knowledge and statistical data. Machine learning 20(3), 197–243
(1995)

9. Imani, S., Shrivastava, H.: Are uGLAD? Time will tell! arXiv preprint
arXiv:2303.11647 (2023)

10. Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with
pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 623–631. ACM (2013)

12 Harsh Shrivastava and Urszula Chajewska

11. Moerman, T., Aibar Santos, S., Bravo González-Blas, C., Simm, J., Moreau, Y.,
Aerts, J., Aerts, S.: GRNBoost2 and Arboreto: efficient and scalable inference of
gene regulatory networks. Bioinformatics 35(12), 2159–2161 (2019)

12. Pu, X., Cao, T., Zhang, X., Dong, X., Chen, S.: Learning to learn graph topologies.
Advances in Neural Information Processing Systems 34 (2021)

13. Rajbhandari, S., Shrivastava, H., He, Y.: AntMan: Sparse low-rank compression to
accelerate RNN inference. arXiv preprint arXiv:1910.01740 (2019)

14. Scutari, M.: Learning Bayesian networks with the bnlearn R package. Journal of
Statistical Software 35(3), 1–22 (2010). https://doi.org/10.18637/jss.v035.i03

15. Shrivastava, H.: On Using Inductive Biases for Designing Deep Learning Architec-
tures. Ph.D. thesis, Georgia Institute of Technology (2020)

16. Shrivastava, H., Bart, E., Price, B., Dai, H., Dai, B., Aluru, S.: Cooperative
neural networks (CoNN): Exploiting prior independence structure for improved
classification. arXiv preprint arXiv:1906.00291 (2019)

17. Shrivastava, H., Chajewska, U.: Methods for recovering Conditional Independence
graphs: A survey. arXiv preprint arXiv:2211.06829 (2022)

18. Shrivastava, H., Chajewska, U.: Neural Graphical Models. In: Proceedings of the
17th European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty (ECSQARU), to appear (2023), https://doi.org/10.48550/
arXiv.2210.00453

19. Shrivastava, H., Chajewska, U., Abraham, R., Chen, X.: A deep learning approach to
recover conditional independence graphs. In: NeurIPS 2022 Workshop: New Frontiers
in Graph Learning (2022), https://openreview.net/forum?id=kEwzoI3Am4c

20. Shrivastava, H., Chen, X., Chen, B., Lan, G., Aluru, S., Liu, H., Song, L.: GLAD:
Learning sparse graph recovery. In: International Conference on Learning Represen-
tations (2020), https://openreview.net/forum?id=BkxpMTEtPB

21. Shrivastava, H., Huddar, V., Bhattacharya, S., Rajan, V.: Classification with
imbalance: A similarity-based method for predicting respiratory failure. In: 2015
IEEE international conference on bioinformatics and biomedicine (BIBM). pp.
707–714. IEEE (2015)

22. Shrivastava, H., Zhang, X., Song, L., Aluru, S.: GRNUlar: A deep learning framework
for recovering single-cell gene regulatory networks. Journal of Computational Biology
29(1), 27–44 (2022)

23. United States Department of Health and Human Services (US DHHS), Centers
of Disease Control and Prevention (CDC), National Center for Health Statistics
(NCHS), Division of Vital Statistics (DVS): Birth Cohort Linked Birth – Infant
Death Data Files, 2004-2015, compiled from data provided by the 57 vital statistics
jurisdictions through the Vital Statistics Cooperative Program, on CDC WON-
DER On-line Database. Accessed at https://www.cdc.gov/nchs/data_access/
vitalstatsonline.htm

24. Vân Anh Huynh-Thu, A.I., Wehenkel, L., Geurts, P.: Inferring regulatory networks
from expression data using tree-based methods. PloS one 5(9) (2010)

A Ethical Concerns

Our method does not introduce any new ethical issues, however, we should take
care when applying to sensitive data. Anonymized infant mortality data is meant
to generate insights into risk factors, primarily for use by doctors. It is not
intended to offer medical advice to expecting parents.

https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.48550/arXiv.2210.00453
https://doi.org/10.48550/arXiv.2210.00453
https://openreview.net/forum?id=kEwzoI3Am4c
https://openreview.net/forum?id=BkxpMTEtPB
https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm
https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm

	Neural Graph Revealers

