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Abstract—This study investigates facets of shallow machine
learning as an accurate data-centric approach to predict
business process behaviour. Shallow machine learning is in-
vestigated as a part of a holistic approach that combines
feature construction, local and global learning, classification
and regression algorithms. Experiments show that, despite the
emerging attention towards deep learning also in predictive
process mining, stacking feature construction and shallow ma-
chine learning algorithms can still outperform various process
predictor competitors (included deep learning ones).
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I. INTRODUCTION

Being able to predict the future behaviour of a business

process is an important business capability that can guar-

antee the higher utilization by acting proactively in antic-

ipation. As an application of predictive analytics, process

prediction is mainly concerned with predicting the evolution

of running traces based on models extracted from a historical

event log [1]. Examples include techniques to predict the

completion cycle time until a trace is resolved [2], [3], [4],

[5], the next activity [6], [7], [8], [9], [4], [10] and the

timestamp of the activity [11], [4], [2], [7], as well as the

outcome of a trace [12], [13].

General purpose predictive analytics has a long history

in supervised shallow machine learning and, more recently,

also in deep learning. Shallow learning requires a feature

engineer to perform the task of identifying the relevant data

characteristics before executing well known classification

and regression algorithms. On the other hand, deep learning

relies on a complex multi-layered representation of the input

data and can perform feature engineering autonomously

through a process defined representation learning. As deep

learning is gaining momentum, it is attracted attention also

in predictive process mining [8], [4], [14], where deep

architectures have been defined to learn over sequence of

events. However, in this paper, we would investigate how

shallow learning can still provide robust predictive analytics

in the context of process mining.

A process prediction task can be in principle addressed

into a shallow machine learning context after that a training

set of data is extracted from a historical event log to

fuel supervised classification or regression algorithms. This

training set should comprise a feature space with the target

to predict. Then a classification or regression model can

be learned from this training set so that the learned model

will permit one to predict the corresponding target of a new

example over a running trace based solely on its descriptive

features. Motivated by the previous considerations, the main

contribution of this paper is a holistic data-centric approach

that applies shallow classification and regression algorithms

for predictive modeling of business processes.

The effectiveness of the proposed approach is empirically

evaluated in two benchmark event logs. The evaluation

assesses the viability of the constructed feature space along

the predictive process tasks and the machine learning algo-

rithms. It also investigates the accuracy dichotomy in choos-

ing whether to use local versus global modeling with respect

to the predictive task. Finally, it compares the accuracy of

the proposed approach to that of recent competitors also de-

signed in the emerging field of deep learning. Interestingly,

our investigations reveal that competitive predictive accuracy

can be still achieved by a shallow learning approach with

the result of outperforming complex almost unfathomable

neural network based predictions.

The paper is organized as follows. Section II reports

preliminary concepts and Section III illustrates the proposed

process machine learning approach. Section IV describes the

relevant results of the empirical study. Finally, Section V

draws some conclusions and outlines some future work.

II. PRELIMINARY CONCEPTS

The basic assumption is that an event log contains events

that register information on activities executed for specific

traces of a certain process type, as well as their duration. The

activity names belong to a finite, non empty set, denoted as

A. An event ε is characterized by two mandatory character-

istics, that is, the event contains an activity name A (with

A ∈ A) and has a timestamp t representing date and time

of occurrence. An event log is a set of events, where each

event is linked to a particular trace. A trace T represents the

execution of a business process instance. It is a finite (non

empty) sequence of distinct events such that time is non-

decreasing in the trace—i.e., ti ≤ tj , 1 ≤ i < j. The length

of a trace is the number of events in the trace. An event log
L is a bag of traces. A prefix trace is a sub-sequence of a
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trace starting from the beginning of the trace. Formally, let

T be a trace made up of a sequence of l events, a prefix trace

PT 1...k is the sequence of the first k consecutive events of

T with 1 ≤ k < l. No prefix trace can correspond to the

original trace (as k < l in the definition). A prefix trace

can be represented over a descriptive feature space—i.e.,

a vector of features. Every feature corresponds to a metric

that assigns a value to each prefix trace. Thus, embedding an

event log to a vector representation corresponds to defining

a function assigning each prefix trace of the event log to a

vector of values—one value for each feature. The resulting

embeddings with the associated targets can be used as a

training set to learn a predictive model allowing to infer the

target of new examples over a running trace. Let PT 1...k

be a prefix trace of a trace T , then the target for the next
activity task is Ak+1—the activity corresponding to the event

εk+1 ∈ T—while the target for the next activity time is

(tk+1 − tk)—the time elapsed between events εk and εk+1

of T . Finally, the target for the cycle time is (tl − tk)—the

time elapsed between the last trace event εl and εk.

III. MACHINE LEARNING PREDICTIVE APPROACH

For each target variable (next activity or timestamp of

the next activity or completion cycle time) considered in

this study, the proposed approach transforms a historical

event log into a training dataset (Section III-A). It runs

shallow machine learning algorithms, in order to learn

process prediction models from the training data (Section

III-B). Finally, it uses these models to predict the process

behaviour of a new running trace (Section III-C).

A. Extracting descriptive features

Prefix traces of a historical event log are transformed

into feature space vectors populated with descriptive features

related to the control-flow perspective (order of activi-

ties), the trace perspective (frequency of activities) and the

performance perspective (time performance). Two feature

extraction approaches, namely ALL and WINDOW, are

considered.

In the ALL approach, the entire prefix traces are used to

populate the descriptive feature space. Specifically, for any

combination of two activity names, e.g. (A, B) in the activity

domain A, a transition feature is defined (A → B). This

counts how many times an event with the activity named A
has been directly followed by another event with the activity

named B in the prefix trace. For each activity name in

A ∈ A, one activity feature is constructed. This is measured

by counting the number of events of the prefix trace having

the specified activity’s name. Finally, a predefined set of

performance features is considered, in order to represent

the temporal information. Performance features are: the

length and time duration of the prefix trace, as well as

the minimum, maximum, mean and median time difference

computed between consecutive events in the prefix trace.

In the WINDOW approach, the most recent w events,

which form the w-long suffix of the prefix traces, are

selected. Windowed events are used to populate the de-

scriptive feature space. In particular, w activity features are

defined by considering the activity information. Each feature

represents the name of the activity in the windowed event.

As these features describe the name of the activities executed

at w consecutive time points, they also describe activity

transitions over the window. In addition, w−1 performance

features are defined by considering the timestamp. Each

feature represents the time difference computed between

consecutive windowed events. Whenever the size of the

prefix trace is lower than w, a dummy event represents each

unavailable event. The dummy event has the activity name

equal to none and the timestamp equal to the starting time

point of the prefix trace.

B. Learning process prediction models

Any vector-based classification algorithm can be selected

to predict the next activity, while any regression algorithm

can be selected to predict the timestamp of the next activity

or the completion cycle time of the trace. In addition, both

global and local learning approaches can be applied in com-

bination with both classification and regression algorithms.

In the global learning approach, for each target variable, one

predictive model is learned for the entire training dataset. On

the other hand, in the local learning approach, for each target

variable, a vector of predictive models is narrowed down to

the prefix traces, which share the same latest activity. In this

way, a local prediction model can be learned for each distinct

activity type that is the last one executed in the prefix trace.

A prefix trace ending with activity Ai belongs to the i-th
local training set. For each target variable, a local predictive

model is learned from each local training set.

C. Predicting process behavior

Let us consider a running trace. This is dealt as a

prefix trace with unknown targets. It is transformed into

the descriptive feature vector so that the process behavior

models, trained from a historical event log, can be used to

predict the activity and the timestamp of the next event, as

well as the completion time. If predictive models have been

learned using the local approach, prediction models one-to-

one associated to the latest activity executed in the running

trace are selected to yield the predictions.

IV. EXPERIMENTS

Let pmKOMETA denote the predictive approach de-

scribed in this paper. It is evaluated in the three predictive

tasks at hand by considering the benchmark event logs and

the experimental setting described in [4].
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A. Event logs and experimental setting

Helpdesk log1 contains events from a ticketing manage-

ment process of the help desk of an Italian software com-

pany. The business process consists of 9 activities. This log

contains 3804 traces and 13710 events. BPI challenge 2012

event log2 pertains to an application process for a personal

loan or overdraft within a global financing organization.

Based upon considerations discussed in [4], the evaluation is

narrowed down to the 9658 work item traces, which contains

events that are manually executed. In addition, only 72414

events of 6 activities with type complete are retained. This

pre-processing is performed as in [4].

For each event log, the chronologically ordered first 2/3 of

the traces are used as training event log, while the accuracy

of predictions is evaluated on the remaining 1/3 of the traces.

The next activity and its timestamp predictions, as well as

the completion cycle time are evaluated on all testing prefix

traces. As reported in [4] no prediction is performed for

1-sized prefix traces.

Two configurations are compared along the feature con-

struction scheme (see Section III-A): ALL and WINDOW.

Based on preliminary investigations, the best accuracy with

WINDOW is commonly achieved with window length set

equal to 6. Two configurations are also compared along

the machine learning approach (see Section III-B): G, the

global learning approach and L, the local learning approach.

Finally, four configurations are considered along the choice

of the base classification algorithm: i) kNN—k-Nearest

Neighborhood (with Euclidean Distance, number of nearest

neighbors equal to 50 and weighting mechanism with the

inverse of the distance), ii) RF—Random Forest (with

number of trees equal to 50), iii) J48—decision tree, and iv)

LOG—Logistic Regression (with logistic parameter equal

ranging among 1.0e− 12, 1.0e− 11, . . . , and 1.0e+ 2 and

automatically selected with a grid search on a three-fold

cross validation of the training set ). Three configurations

are defined along the choice of the base regression algo-

rithm: kNN, M5’—model tree, and SVR—Support Vector

Regression (with Gaussian kernel, C=64 and γ parameter

ranging among 2.0E − 3, 2.0E − 2, . . . and 2.0E + 3 and

automatically selected with a grid search on a 3-fold cross

validation of the training set)3. These algorithms are selected

as commonly used in many machine learning applications

[15].

The experimental setting is replicated to evaluate the

performance of various configurations of pmKOMETA and

its competitors. We consider four competitors for the predic-

tion of the next activity [7], [9], [8], [4], three competitors

for the prediction of the timestamp [2], [7], [4] and three

competitors for the prediction of the completion cycle time

1https://data.mendeley.com/datasets/39bp3vv62t/1.
2http://www.win.tue.nl/bpi/2012/challenge
3The learning algorithms implemented in WEKA 3.6 are used.

[3], [2], [4]. Results of competitors are collected from [4].

B. Results and discussion

We start analyzing pmKOMETA in the prediction of

the next activity. The accuracy results in Figures 1(a)-

1(b) confirm that local approach L commonly yields a

gain in the accuracy for this specific task. Interestingly, in

both event logs, configurations with L always outperform

configurations with G when the descriptive features are

constructed in configuration ALL. This behavior is inde-

pendent of the base classification algorithm. To improve

this analysis, we explore the accuracy achieved by the most

accurate configurations of pmKOMETA, which are selected

for both L (row 1, Table I – L+ALL+J48 for Helpdesk

and L+ALL+kNN for BPIW2012) and G (row 2, Table

I, G+ALL+kNN for Helpdesk and G+WINDOW+J48 for

BPIW2012), respectively. The highest accuracy is achieved

with L+ALL in both event logs, although the classification

algorithm may change in the selected configurations. This

confirms that the combination of local approach L and

features computed with schema ALL actually contributes to

yield accurate predictions of the next activity by overcoming

the difficulty posed by predicting the behaviour of traces

executing complex process models. On the other hand, these

results do not provide sufficient evidence to assess that a

classification algorithm can systematically outperform all

other classification algorithms in this task. Both kNN and

J48 are alternately selected in the best configurations for

the two event logs. Final considerations are drawn from the

analysis of competitors (rows 3-6, Table I). pmKOMETA
gains in accuracy compared to all competitors in this study

included the deep learning competitors proposed in [8], [4].

We proceed analyzing pmKOMETA in the prediction of

the timestamp of the next activity and the completion cycle

time. The error results, reported in Figures 1(c)-1(d) for the

prediction of the timestamp of the next activity and Figures

1(e)-1(f) for the prediction of the completion cycle time,

highlight that local approach L not necessarily diminishes

the error. Instead, results allow us to conclude that the

regression algorithm SVR always leads to a reduction of

the error and that this behavior is independent of the

modeling approach and the feature schema selected. Finally,

configurations with ALL generally outperform configurations

with WINDOW. These considerations are also confirmed by

the best configurations of pmKOMETA, which are selected

for both L (rows 7 and 11, Table I – L+ALL+SVR for

both tasks, as well as the two logs) and G (rows 8 and

13, Table I, G+ALL+SVR for the two tasks in Helpdesk,

G+WINDOW+SVR for the prediction of the timestamp of

the next activity in BPIW2012, while G+ALL+SVR for

the prediction of the completion cycle time in BPIW2012)

respectively. Finally, we note that for both event logs the best

configurations selected for pmKOMETA always outperform

the best configuration of each competitor in this study (rows
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(a) Helpdesk - activity (b) BPIW2012 - activity (c) Helpdesk - timepstamp

(d) BPIW2012 - timestamp (e) Helpdesk - completion (f) BPIW2012 - completion

Figure 1. Accuracy of next activity predictions (Figures 1(a) and 1(b)), mean absolute error (in days) of timestamp of the next activity predictions (Figures
1(c) and 1(d)) and mean absolute error (in days) of completion cycle time predictions (Figures 1(e) and 1(f)) of various configurations of pmKOMETA.

Table I
ACCURACY OF NEXT ACTIVITY PREDICTIONS (ROWS 1-6), MEAN

ABSOLUTE ERROR (IN DAYS) OF TIMESTAMP OF NEXT ACTIVITY

PREDICTIONS (ROWS 7-11) AND MEAN ABSOLUTE ERROR (IN DAYS) OF

COMPLETION CYCLE TIME PREDICTIONS (ROWS 12-13). THE REPORTED

CONFIGURATIONS OF pmKOMETA (ROWS 1-2, 7-8, 12-13) ARE THE

MOST ACCURATE CONFIGURATIONS SELECTED WITH RESPECT TO THE

LOCAL MODELING APPROACH AND THE GLOBAL MODELING APPROACH.
THE BEST RESULTS ARE IN BOLD. RESULTS OF COMPETITORS FOR

COMPLETION TIME PREDICTION ARE REPORTED IN FIGURE 2 GROUPED

FOR PREFIX TRACES OF DIFFERENT LENGTH AS REPORTED IN [4].

task Helpdesk BPIW2012

activity

L+ALL+J48 .753 L+ALL+kNN .789
G+ALL+kNN .739 G+WINDOW+J48 .787

[7] .732 [7] .785
[4] .712 [4] .760

[8] .623
[9] .719

timestamp

L+ALL+SVR 3.74 L+ALL+SVR 1.50
G+ALL+SVR 3.70 G+WINDOW+SVR 1.50

[7] 4.42 [7] 1.76
[4] 3.75 [4] 1.56
[2] 5.67 [2] 1.91

completion
L+ALL+ SVR 6.21 L+ALL+SVR 6.77
G+ALL+ SVR 6.18 G+ALL+SVR 6.77

9-11, Table I, as well as Figures 2(a)and 2(b)).

C. Final remarks

In short, the empirical study shows that local machine

learning approach L yields more accurate predictions than

global machine learning approach G only when we use

L to predict the next activity. This behavior depends on

the fact that L derives a distinct predictive model based

on the last activity observed in the training prefix traces.

This appears relevant for the activity prediction only. In

fact, the prediction of the next activity is reasonably de-

pendent on the activities already performed. Differently,

this information is not so relevant for the time predic-

tions. Additional remarks can be drawn from the overall

analysis of both the feature construction and the predictive

algorithms. The features constructed considering all events

of the prefix trace commonly contribute to achieve to the

highest accuracy in each task. Both Decision Trees and k-

Nearest Neighborhood perform well for the next activity

prediction, while Support Vector Regression achieves the

lowest error for the prediction of both the timestamp of

the next activity and the completion cycle time. Finally the

empirical study highlights that pmKOMETA outperforms

existing competitors, included deep learning ones. This is a

further confirmation of the viability of the shallow machine

learning holisitc approach that is the main contribution of

this paper. A limitation of the proposed approach is that the

proposed learning approach does not include any mechanism

to incorporate possible interventions, which, in turn, may be

operated by resources running the traces once they know

predictions of the trace future behavior during the execution.

In addition, the learning model is performed in a batch mode

only by considering historical data, without any ability of

fitting the predictive model to possible changes occurring in

the process behavior over the time.

V. CONCLUSION AND FUTURE WORK

This paper describes an integrated machine learning ap-

proach, in order to yield accurate predictions of the next

activity in a running trace, the timestamp of the next activity,

as well as the completion cycle time. The empirical study

shows the effectiveness of the proposed approach compared

to various competitors also developed in deep learning.

As future work, we plan to investigate new clustering solu-

tion based on time performance to improve the performance

of local machine learning in predicting the time performance

behavior of a trace. We also intend to extend the proposed

approach to stream learning, in order to learn predictive
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(a) Helpdesk

(b) BPIW2012

Figure 2. Mean absolute error (in hours) of completion cycle time prediction using prefix traces of different length. The errors (in hours) of Dongen et
al. 2008 [3], van der Aalst et al. 2011 [2] and Tax eta al. 2017 [4] are provided by Niek Tax and reported in [4].

models which may also change over the time as new traces

are collected. We also plan to explore the use of prescriptive

learning theories, in order to enrich the proposed learning

approach with guidelines that describe what to do in order

to achieve specific outcomes and how expanding the model

by integrating possible reactions to prediction-based alerts.
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