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Abstract

Refinement operators for theories avoid the prob-
lems related to the myopia of many relational learn-
ing algorithms based on the operators that refine
single clauses. However, the non-existence of ideal
refinement operators has been proven for the stan-
dard clausal search spaces based on §-subsumption
or logical implication, which scales up to the spaces
of theories. By adopting different generalization
models constrained by the assumption of object
identity, we extend the theoretical results on the ex-
istence of ideal refinement operators for spaces of
clauses to the case of spaces of theories.

1 Motivation

The investigation of learning through refinement operators al-
lows to decouple the search from the heuristics in the study
of relational learning algorithms. Therefore, the choice of the
generalization model for a search space plays a key role since
it affects both its algebraic structure and the definition of re-
finement operators for that space.

Logical implication and #-subsumption are the relation-
ships that are commonly employed for inducing generaliza-
tion models in relational learning (the latter turning out to be
more tractable with respect to the former). Yet, they are not
fully satisfactory because of the complexity issues that the re-
sulting search spaces present, although subspaces have been
found where the generalization model is more manageable.

Indeed, the effectiveness and efficiency of learning as a
refinement process depends on the properties of the search
space and, as a consequence, of the operators. In some cases
the important property to be required to operators is flexibil-
ity [Badea, 20011, meaning that they should be capable of fo-
cussing dynamically on certain zones of the search space that
may be more promising. Conversely, the property of ideality
[Nienhuys-Cheng and de Wolf, 1997] has been recognized as
particularly important for the efficiency of incremental algo-
rithms in search spaces with dense solutions. It is also possi-
ble to derive non-redundant operators from ideal ones, since
the former are recognized to be more suitable for spaces with
rare solutions [Badea and Stanciu, 1999].

Weakening implication by assuming object identity, an ex-
tension of the unique names assumption [Reiter, 19801, as

a semantic bias has led to the definition of Gy-subsumption
and Ol-implication |Esposito et al., 2001a], clausal relation-
ships which induce more manageable search spaces. The ex-
istence of ideal refinement operators in these generalization
models is possible [Esposito er al., 2001b], while this does
not hold in clausal spaces ordered by 8-subsumption or impli-
cation [Nienhuys-Cheng and de Wolf, 1997]. The objective
of this work is to extend their result on spaces of clauses and
prove the existence of ideal refinement operators for spaces
of theories in those generalization models.

Indeed, most algorithms for relational learning, such as
those employed in FOIL [Quinlan, 1990] and PROGOL
[Muggleton, 1995], adopt greedy iterative covering strategies
based of the refinement of clauses. Although these refine-
ments may turn out to be optimal for a single clause, the re-
sult of assembling them in a theory is not guaranteed to be
globally effective, since the interdependence of the clauses
with respect to covering may lead to better theories made up
of locally non-optimal clauses [Bratko, 1999].

This urges more complex refinement operators to be
adopted in algorithms obeying to a more global strategy that
are able to take into account the possible interactions between
the single clausal refinements. Hence, the new problem is
defining operators that refine whole theories rather than sin-
gle clauses [Midelfart, 1999; Badea, 2001]. The resulting
extended setting would also take into account background
knowledge that may be available, and then it is also compara-
ble to generalized and relative subsumption [Buntine, 1988;
Plotkin, 1971] or implication [Nienhuys-Cheng and de Wolf,
1997]. However, these subjects concern the heuristics of re-
finement, which is no covered in this paper.

This paper is organized as follows. In Section 2, we present
the semantics and proof-theory adopted in the framework.
Section 3 deals with refinement operators and their proper-
ties. Then, in Section 4, refinement operators for the search
space considered are defined and proven to be ideal. Section
5 summarizes the paper outlining possible developments.

2 Generalization Models and Object Identity

The representation language adopted in the proposed frame-
work concerns logic theories (whose space is denoted 2€)
made up of clauses (space C). For the basic notions about
clausal representations in Inductive Logic Programming, the
reader can refer to [Nienhuys-Cheng and de Wolf, 1997].



The framework relies essentially on the following bias pro-
posed in [Esposito et al., 2001a]:

Assumption (Object Identity) In a clause, terms denoted
with different symbols must be distinct, i.e. they represent dif-
ferent entities of the domain.

The intuition for this bias is the following: considering the
two clauses C = ¢(z) «— p(X,X) and D = ¢(z) <
p(X, X),p(X,Y),p(Y, Z),p(Z, X) in spaces where §-sub-
sumption (or implication) is adopted for inducing the gener-
alization model, they are equivalent (in fact C'is the reduced
clause of D); this is not so natural as it may appear, since
more elements of the domain can be accounted for in D than
in C (indeed in this framework C' is more general than D).

The expressive power is not diminished by this bias, since
it is always possible to convey the same meaning of a clause,
yet it may be necessary to employ more clauses, e.g. g(X) «
p(X,Y) is equivalent to the couple of clauses (a theory)
{(g(X) — p(X, X)), (g(X) — p(X,Y))} when object
identity is assumed.

The following definitions specify how the assumption
above can be captured in the syntax and in the semantics of a
clausal representation.

2.1 Semantics and Proof Theory

In citeEsposito01 substitutions that fulfill the assumption
made have been defined. Since a substitution can be regarded
as a mapping from the variables to the terms of a language,
we require these functions to satisfy additional properties to
avoid the identification of terms:

Definition 2.1 Given a set of terms T (omitted when obvious)
a substitution o is an Ol-substitution w.r.t. T iff Vt1,t0 € T':
tl ;é tQ lmplzes tla ?é tQO'.

Based on Ol-substitutions, it is possible to define related no-
tions such as ground and renaming Ol-substitutions and their
composition, instance clauses, ground instances and alpha-
betic variants.

When the object identity assumption biases the interpreta-
tions, the resulting semantics can be defined as follows:

Definition 2.2 Given a non-empty domain D, a pre-interpre-
tation J of the language C assigns each constant to an ele-
ment of D and each n-ary function symbol f to a mapping
from D™ to D.

An Ol-interpretation I based on J is a set of ground instances
of atoms with arguments mapped in D through J.

Given a ground Ol-substitution v mapping vars(C) to D, an
instance A~y of an atom A is true in I iff Ay € I otherwise it
is false in I. A negative literal — A~ is true in I iff Ay is not,
otherwise it is false in I.

I is an OI-model for the clause C iff for all ground OI-
substitutions -y there exists at least a literal in Cy that is true
in I, otherwise the clause is false in 1.

The standard notions of rautology, contradiction, satisfiabil-
ity and consistency can be straightforwardly transposed to
this semantics. Hence, they defined the form of implication
that is compliant with this semantics [Esposito et al., 2001al.
Besides, this relationship induces a quasi-order on spaces of
clauses and theories.

Definition 2.3 Let C, D be two clauses. C implies D under
object identity (and then C'is more general than D w.r.t. OI-
implication) iff all OI-models for C are also OI-models for
D. This relationship is denoted with C' =1 D.
Analogously, a theory T implies C' under object identity, de-
noted with T' |=o1 C, iff all OI-models for T are also OI-
models for C. Finally, a theory T is more general than a
theory T w.r.t. Ol-implication iff VC' € T': T = C'.
Ol-implication is a constrained form of logical implication
biassed by the object identity assumption, as shown in the
following example:

Example 2.1 Given the two theories T = {(p(X) «
a(f(X),Y),a(Y, £(X))), (a(f(X), f(X)) — r(2))} and
T = {p(X) « r(Z)}, observe that T |=T" but T [or T'.
This depends on the disallowed binding Y/ f(X) that would
identify terms within the same clause.

The definition of the proof-theory is now briefly recalled:

Definition 2.4 Given a finite set of clauses S, we say that 0
is an Ol-unifier iff AF such thatVE; € S : E;0 = E and 0
is an Ol-substitution w.r.t. terms(E;).

An Ol-unifier 0 for S is a most general Ol-unifier for S iff for
each Ol-unifier o of S there exists an OI-substitution T such
that o = 0. This is denoted with mgue;(S).

The following notions represent resolution and derivation
when exclusively Ol-unifiers are used.

Definition 2.5 Given the clauses C' and D that are supposed
standardized apart, a clause R is an Ol-resolvent of C and
D iff there exist M C C and N C D such that {M,N} is
unifiable through the mguo; 6 and R € ((C\M)U(D\N))#.
Roi(C, D) is the set of the Ol-resolvents of C and D.

An Ol-derivation is obtained by successively chaining OI-
resolutions.

Definition 2.6 For any theory T, the closure of Ol-resolution
is defined

Re(T) = |J Ri(T)

n>0

where RQ(T) = T and R%(T) = R NT) U {R =
Rol(C,D) | C,D € Ry '(T)}.
If 3C € RY(T) then there is an Ol-derivation of C' from T
of length n.

This proof-procedure was proven sound in [Esposito er al.,
2001al, thus bridging the gap from the proof-theory to the
model-theoretic definition of OI-implication.

2.2 Gy-subsumption and OI-implication

A syntactic relationship, similar to #-subsumption but biased
by the object identity assumption, has been defined based the
notion of OlI-substitution.

Definition 2.7 Given two clauses C and D, C €y-subsumes
D iff there exists an Ol-substitution o w.r.t. terms(C') such
that Co C D. In this case, C' is more general than D w.r.t.
Go1-subsumption, denoted C' >o; D. If also D >¢; C' then
they are equivalent w.r.t. Gy -subsumption, denoted C' ~¢; D.
Analogously, given the theories T, T', T' is more general than
T w.rt. Go-subsumption iff VD € T' 3C € T: C >o D,
denoted T > T".



This relationship induces a quasi-order on spaces of clauses
(and theories) which is weaker than OI-implication. Indeed,
the following result [Esposito et al., 2001al shows that ex-
actly:

Theorem 2.1 Given a theory T and a non-tautological
clause C, T' |=o1 C iff there exists D € R, (T) such that
D 6-subsumes C.

This result bridges the gap from model-theory to proof-theory
in this framework. It also suggests the way to decompose OI-
implication that is exploited for defining complete refinement
operators.

Similarly to standard implication, it is nearly straightfor-
ward to demonstrate some consequences of Theorem 2.1
originally due to Gottlob [Gottlob, 1987]. Given a clause C,
let Ct and C~ denote, respectively, the sets of its positive
and negative literals. Then, it holds:

Proposition 2.1 Let C and D be clauses. If C |=o; D then
Ct Qy-subsumes DT and C~ Qor-subsumes D~

Since OI-substitutions map different literals of the subsum-
ing clause onto different literals in the subsumed one, equiva-
lent clauses under €y;-subsumption have the same number of
literals. Thus, a space ordered by y-subsumption is made up
of non-redundant clauses. Indeed, it holds:

Proposition 2.2 Let C' and D be two clauses. If C -
subsumes D then |C| < |D|. Moreover, C ~o D iff they
are alphabetic variants.

As a consequence of the propositions above, it is possible
to prove the following results on the depth and cardinality of
clauses [Fanizzi and Ferilli, 2002], giving lower bounds for
some measures definable on clauses, when implication under
object identity holds:

Definition 2.8 The depth of a term t is 1 when t is a vari-
able or a constant. If t = f(t1,...,ty), then depth(t) =
1 + max?_,(depth(t;)). The depth of a clause C, denoted
depth(C), is the maximum depth among its terms.

Proposition 2.3 Given the clauses C and D, if C' =01 D then
it holds that depth(C) < depth(D) and |C| < |D|.

3 Theory Refinement and Object Identity

A learning problem can be cast as a search problem [Mitchell,
1982] where theory refinement is triggered when new evi-
dence made available is to be assimilated. The canonical in-
ductive paradigm requires the fulfillment of the properties of
completeness and consistency for the synthesized theory with
respect to a set of input examples.

When an inconsistent (respectively, incomplete) hypothe-
sis is detected, a specialization (resp., generalization) of the
hypothesis is required in order to restore this property of the
theory. In the former case the refinement operators must
search the space looking for more specific theories (down-
ward refinements); in the latter, more general theories (up-
ward refinements) are required.

The formal definition of the refinement operators for
generic search spaces, is based on the algebraic notion of
quasi-ordered set:

Definition 3.1 A set S endowed with a relationship < that is
reflexive and transitive is a quasi-ordered set (S, <)

Then, the following definitions specify the notion of a
function for computing refinements in generic quasi-ordered
search spaces.

Definition 3.2 Given a quasi-ordered set (S,=), a refine-
ment operator is a mapping from S to 25 such that:

e VCES:p(C)C{DeS|D=C}

(downward refinement operator)

e VC eS8:46(C)C{DeS|C=<D}
(upward refinement operator)

A notion of closure upon refinement operators is required
when proving the completeness of the operators.

Definition 3.3 In a quasi-ordered set (S, =), let T be a re-
finement operator. The closure of T for C € S is defined

where 79(C) = {C} and
™(C)={D|3E € ™ 1(C): De7(E)}.

Ultimately, refinement operators should construct chains of
refinements from the starting elements (theories in this case)
to target ones.

3.1 Properties of the Refinement Operators

As mentioned above, the properties of the refinement opera-
tors depend on the algebraic structure of the search space. A
refinement operator induces a refinement graph [Nienhuys-
Cheng and de Wolf, 1997], that is a directed graph containing
an edge from 7' to 7" in S in case the operator 7 is such that
T’ € 7(T). Refinement operators compute such steps.

A major source of inefficiency may come from refinements
that turn out to be equivalent to the starting ones. Depend-
ing on the search algorithm adopted, computing refinements
that are equivalent to some element that has been already dis-
carded may introduce a lot of useless computation. As to the
effectiveness of the search, a refinement operator should be
able to find a path between any two comparable elements of
the search space (or their equivalent representatives). It is de-
sirable that at least one path in the graph can lead to target el-
ements. This means that a complete refinement operator can
derive any comparable element in a finite number of steps.
The following properties formally define these concepts:

Definition 3.4 In a quasi-ordered set (S, =), a refinement
operator T is locally finite iff VC' € S : 7(C) is finite and
computable.

A downward (resp. upward) refinement operator p (resp. J)
is proper iff VC € S: D € p(C) implies D < C (resp.
D € §(C) implies C < D).

A downward (resp. upward) refinement operator p (resp. )
is complete iff VC,D € S, D < Cimplies JE € §: E €
p*(C)and E ~ D (resp. C < D implies JE € S: E €
0*(C)and E ~ D).



Let us observe that local finiteness and completeness en-
sure the existence of a computable refinement chain to a tar-
get element, and properness ensure a more efficient refine-
ment process, by avoiding the search of equivalent clauses.
Then, the combination of these properties confers more ef-
fectiveness and efficiency to an operator:

Definition 3.5 In a quasi-ordered set (S,=), a refinement
operator is ideal iff it is locally finite, proper and complete.

As mentioned in the introduction, other important proper-
ties of refinement operators have been defined, yet they go
beyond the scope of this paper which focusses on ideality.

3.2 Minimal Refinements of Clauses

The existence of maximal specializations and minimal gener-
alizations of clauses was proven for both the 6-subsumption
and the Ol-implication generalization model [Fanizzi and
Ferilli, 2002]. These results are briefly recalled here for be-
ing used in the construction of ideal refinement operators pre-
sented in the following section.

As a consequence of Theorem 2.1, some limitations are
provable as concerns depth and cardinality for a clause that
implies (subsumes) another clause under object identity. This
yields a bound to the proliferation of possible generalizations:

Proposition 3.1 Let C and D be two clauses. The set of gen-
eralizations of C and D w.r.t. Ol-implication is finite.

The proof is straightforward since the depths and cardinalities
of the generalizations are limited, by Proposition 2.3. Now,
given two clauses C' and D, let us denote with G the set of
generalizations of {C, D} w.r.t. Ol-implication. Observe that
G # () since O € G. Proposition 3.1 yields that G is finite.
Thus, since the test of Ol-implication between clauses is de-
cidable [Fanizzi and Ferilli, 2002], it is theoretically possible
to determine the minimal elements of G by comparing the
clauses in G and eliminating those that are overly general.

For computing theories that are proper generalizations of
the starting ones, an operator for inverting Ol-resolutions is
needed which is similar to the V-operator [Muggleton and
Buntine, 1988]. Indeed, it is possible to define a theoretic
operator in the following way:

Definition 3.6 Let T be a theory. The operator for the inver-
sion of the OlI-resolution is defined:

Vo](T) = {D eC | iC € T,D/ eC: Ce ROI(D,D/)}

Of course there is a lot of indeterminacy in this definition.
Yet it suffices to our theoretical purposes. In fact, the defi-
nition of an actual operator to be implemented in a learning
system should consider also other information (such as exam-
ples, background knowledge, etc.), to specify the underlying
heuristic component.

As regards maximal specializations, the major difficulty
comes from the fact that under standard implication, C' U D
is a clause that preserves the models of either clause, hence
turning out to be a maximal specialization. In this setting, as
expected, more clauses are needed than a single one; indeed
the following operator has been defined:

Definition 3.7 Ler C1 and Cs be two clauses such that Cy
and Cy are standardized apart and K a set of new constants
such that: |K| > |vars(Cq U C2)|. A new set of clauses is
defined Uy (C1,Ca) = {C| C = (Cyoy U Caoz)oy oy '}
where o1 and oo are Skolem substitutions for, respectively,
Cy and Cs with K as their term set'.

Example 3.1 Given two clauses C; = {p(X,Y),q(X)}
and Cy = {p(X',Y"),r(X")}, the Ol-substitutions o1 =
{X/a,Y/b} and oo = {X'/a,Y'/b} yield the following
clause: Fy = {p(X,Y),q(X),r(X)}. Similarly o3 =
{X/a,Y/b} and o4 = {X'/b,Y" /a} yield the clause: F> =
{p(X,Y),p(Y, X),q(X),r(X)} and so on.

1

It is easy to see that, clauses (Cio1 U 0202)01_102_ are
equivalent to those in (Cyoq1 U C202)02_101_1. Besides, the
clauses in Uy (C, D) preserve the OI-models of C' and D:

Proposition 3.2 Let C, D and E be clauses such that C and
D are standardized apart. If C =or E and D =y E then
VF € Uy(C,D): F |=o: E.

This result implies that U (C, D) contains maximal special-
izations of the two clauses w.r.t. OI-implication. For the ideal-
ity of the operator proved in the next section, it is also impor-
tant to note that this set of specializations is finite. Moreover
the definition of L4; and also Proposition 3.2 can be extended
to the case of multiple clauses [Fanizzi and Ferilli, 2002].

4 Ideal Operators for Theories

Nonexistence conditions for ideal refinement operators for
generic spaces are given in [van der Laag, 1995; Nienhuys-
Cheng and de Wolf, 1997]. A close relationship is detected
between ideality and the covers of elements of (S, <), a cover
of Cbeinga D € Ssuchthat D < Cand AE: D< E<C
(resp. C < Dand AE: C < E < D). A condition that is
necessary for the ideality of refinement operators is that they
return supersets of the sets of covers (up to equivalence).

Theorem 4.1 In the space (C, <gp), where <y denotes the or-
der induced by 0-subsumption, on a language with at least a
binary predicate, an ideal refinement operator does not exist.

The non-existence of ideal refinement operators for spaces
of clauses ordered by implication can be proven as a conse-
quence of this result [Nienhuys-Cheng and de Wolf, 19971,
since O-subsumption is weaker than logical implication. Be-
sides, this can be extended, proving the non-existence of
refinement operators for search spaces of theories endowed
with the ordering relationship induced by 6-subsumption
[Midelfart, 1999] or the one induced by logical implication
[Nienhuys-Cheng and de Wolf, 1997].

Conversely, in this framework it is possible to exploit the
properties of the refinement operators for clausal spaces.

4.1 Ideal Operators for ,-subsumption

As regards the spaces of clauses in the generalization model
induced by 6y;-subsumption, we exploit the ideality of the op-
erators given in [Esposito er al., 2001b].

The term set of a set of clauses T by the Skolem substitution &
is the set of all terms occurring in T'o.



Definition 4.1 In the quasi-ordered space (2€,>¢), given a
theory T, let Ty, be a non redundant theory equivalent to T.
The downward refinement operator gy is defined as follows:

o [(Tnr \ S)U{D € pu(C) | C € S}] € pu(T)
where S C Ty

o Thr \ {C} S R)](T) ifC € Ty
The upward refinement operator &, is defined as follows:

o [(Thr \S)U{D € u(C) | C € S} € &a(T)
where S C T,

o Ty U{C} e (1) if C & Ty
The ideality of these operators is proven as follows:

Theorem 4.2 In the search space (2C, >o1), the refinement
operators oy and &y are ideal.
Proof:

por: (locally finite) obvious.
(proper) by the properness of poy for clauses.
(complete) Suppose T >o T' and T' For T. Let
T ={D; | i = 1,...,n}. The theories can be sup-
posed to be non redundant, otherwise the reduced equiv-
alent theory can be computed by removing clauses by
means of the second item of the operator.
By definition T >o; T’ means that VD; € T', i €
{1, ce ,n},HCi eT: C; >0 D;.
By the completeness of the operator py for clauses, it
holds that Vi € {1,...,n}3k;: D; € pki(Cy).
Starting from Ty = T, the first component of the op-
erator is iterated, obtaining for each T a refinement
Tjt1, by choosing S; as the subset of T; made up of
the clauses that are not in the target theory T' while
being strictly more general than clauses in T', that is
SJ:{CGCZ}\T,|3D€T/ C>OI-D}-
Eventually it holds that 3Ty, € pk(T) for some k <
max_, (k;) such that Vi D; € T.
T}, may be larger than T'. Thus the second component
of por for theories can be employed for deleting the ex-
ceeding clauses from T}, yielding T".
Finally we have that T" € p§ (T).

dor: Analogously.

These operators will be employed in the definition of the
refinement operators for the stronger order induced by OI-
implication.

4.2 Ideal Operators for OI-implication

As regards the generalization model induced by OI-
implication, some notions and results given in Section 3.2
are exploited. In particular, these operator should be able to
compute specializations and generalizations that are able to
reach those clauses involved in Ol-resolution steps (and their
inverse).

Definition 4.2 In the quasi-ordered space (2€,|=o), let T €
2€. The downward refinement operator g, is defined as fol-
lows:

o U(C)cesC € pou(T) where S C T

* Uces((T'\ S) Ui’ (C)) € pu(T)
where S C T and p, denotes the downward refinement
operator for clauses wrt |=o

o I'" e pu(T) if T' € pu(T)
where po” denotes the downward refinement operator
for theories wrt >

The upward refinement operator &y is defined as follows:
o TU{C} € &u(T) where AR C T and C € V(T
o Uces((T\ S) Uk (0)) € du(T)

where S C T and &, denotes the upward refinement
operator for clauses wrt o

[ ] T/ S (%I/I(T) l‘fT/ S (%1(T>
where &, denotes the upward refinement operator for
theories wrt >¢;

The ideality of these operators is stated by the following
result (Figure 1 depicts the related refinement graph):

Theorem 4.3 In the search space (2°, =), the refinement
operators po; and & are ideal.
Proof:

por: (locally finite) by definition of the various operators and
the finiteness of the theories.
(proper) by the properness of the refinement operators
employed in the various items.
(complete) Suppose T |=o1 T' and T' Vo1 T with
n = |T'|. Since redundancy can be eliminated by re-
moving redundant clauses (and tautologies) through the
last item of the operator, we will consider the theories as
non redundant.
Let us observe that T =51 T’ is equivalent to VC; € T':
TExwCifori=1,...,n.
By Theorem 2.1, for each C;, there exists a D; such that
D; € Rg{(T), for some k;, and D; Go-subsumes C;.
Observe that, by using the first item of the refinement op-
erator, it is possible to produce the theory Tg containing
the maximal specializations of the clauses in S C T
employed in the Ol-derivation the of D;’s (by the ex-
tension of Lemma 3.2 to the case of multiple clauses
where each maximal specialization is more general wrt
Ol-implication than an Ol-resolvent D;): Ts € poi(T).

T |

. v
Ts[ \/ F1,F2,..,Fh \/ ]
S T S
T | C1, Ca, ..., Cn |

Figure 1: The Refinement Graph



Observe that VF € Ts F o D;. Now, it is possible
to iterate (at most n times for the D, that are properly
by some F) the second item of the operator, in order to
compute the theory Tp = {D; | i = 1,...,n}, thus we
can write: Tr € pk(Ts), k < n.

By construction ¥i D; >o Cy, then Tp >0 T, then
we can exploit the ideal operator for theories wrt G-
subsumption (third item of the operator for theories wrt
Ol-implication) writing: T" € p§,(Tr).

Finally, by chaining these steps, it is possible to con-
clude that: T" € pi(T).

dor: Analogously to the previous proof and in the same hy-
potheses, it is possible to invert the by-subsumption of
Tr wrt T using the last item of the definition of &, for
theories wrt Ol-implication: T € §3,(T").
Then, a number of Ol-resolutions are to be inverted by
using the first item of &1 This number is finite due to
Proposition 2.3 and then can be done tentatively in a fi-
nite number of steps. Then T' € 65,(Tr).
Finally, by chaining these steps, it is possible to con-
clude that: T € 65,(T").

Differently from the standard generalization models, in this
framework the number of Ol-resolution steps is bounded be-
cause, during Ol-implication or @y-subsumption steps, the
sizes of the clauses increase (decrease) monotonically, as a
consequence of Propositions 2.2 and 2.3.

5 Conclusions

In this work the existence of ideal refinement operators was
proved in the search space of theories ordered by general-
ization models based on object identity. Coupled with some
heuristics, this allows for the definition of efficient refinement
algorithms that avoid the myopia of the traditional relational
learning approaches.

We focussed on the effectiveness of the refinement opera-
tors, that is related to their static properties. In general this
is not sufficient for defining a learning algorithm: efficiency
plays a key role when dealing with first order logics. The suc-
cessive step is to investigate the dynamic properties of these
operators when they are to be guided by means of heuristics
based on the available examples and/or other criteria.

We have also mentioned that in spaces with rare solutions it
is more suitable to have an operator that is non redundant, be-
cause almost all of the paths that could be constructed would
not lead to a target theory. It should be investigated how to
define non redundant operators in this framework.
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