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Abstract. Efficiency of the first-order logic proof procedure is a major issue when
deduction systems are to be used in real environments, both on their own and as a
component of other systems (e.g., learning systems). Hence, the need of techniques
that can speed up such a process. This paper proposes a proof procedure that works
under the Object Identity assumption, and shows experimental results in support of its
performance. Imposing the Object Identity bias does not limit expressive power, while
turning out to be even more intuitive to the human way of thinking than the classical
setting.

1 Introduction

Inductive Logic Programming (ILP) aims at automatically learning logic programs that ex-
plain (‘cover’) a given set of positive examples while rejecting other negative ones. In this
context, because of the implication relationship being undecidable in general [12], a cen-
tral role is played by #-subsumption, used to decide if a rule covers an example as well as
to obtain the reduction of clauses. Completeness and consistency checks of new clauses (or
clause refinements) against given examples, in particular, require a large amount of subsump-
tion tests. Hence, the availability of an efficient §-subsumption algorithm heavily affects the
overall efficiency of ILP learning systems.

Given C and D clauses, C 8-subsumes D iff there is a substitution 8 such that C6 C D.
A substitution is a mapping from variables to terms. It is possible to denote substitutions by
0={X; —ti,...,X, — t,}. Application of a substitution 6 to a clause C, denoted by C¥0,
rewrites all the occurrences of variables X; (i = 1...n) in C by the corresponding term ¢;.

A basic algorithm for checking if a clause C' #-subsumes a clause D, having the same
predicate in their head, can be obtained in Prolog by skolemizing D), then asserting all the
literals in the body of D, and finally querying the head of C'. The outcome is computed by
Prolog through SLD resolution [10], which can be very inefficient under some conditions.

Various studies were carried out on such a topic, and a number of improvements were pro-
posed. Among the most important we recall those in [7] (based on the concept of determinate
matching) and in [11] (that uses the graph context to extend the scope of determinate match-
ing). A recent algorithm, named Django [8], showed the best results. Its authors formalize
f-subsumption as a binary CSP problem and present a new combination of CSP heuristics for



it. The experimental validation of Django outperforms the #-subsumption algorithms based
on determinate matching and graph context in computational cost.

The new matching procedure that we propose in this paper is able to check in an efficient
way if a clause f-subsumes another clause under Object Identity (OI for short), and in such a
case it outputs the set of all possible substitutions by which it happens. A description of the
OI framework can be found in [5]. Here, we just recall some basic definitions.

Object Identity assumption. Within a clause, terms (even variables) denoted with
different symbols must be distinct (i.e., they must refer to different objects).

Example 1.1. Under OI assumption, the Datalog clause'
C = p(X) - Q(X7X>7Q(}/7 CL).

is an abbreviation for the Datalog®’ (a logic language resulting from the application of OI to
Datalog) clause

Cor =p(X) : = ¢(X, X),q(Y,a) | [X # Y], [X # a],[Y # a.

where ‘||” means and just like °, but is used for the sake of readability to put in evidence
the inequalities between terms, that are explicitly added to each clause in order to embed the
Object Identity assumption into the normal proof procedure.

Definition 1.1 (/-subsumption under OI). Let C', D be two Datalog clauses. D 6-subsumes
C'under OI (D 0y ;-subsumes C) iff do substitution s.t. Do;o0 C Coy.

This paper is organized as follows. The next Section argues in support of Object Iden-
tity; then, Section 3 presents a proof-procedure for the space of Datalog Horn clauses under
such an assumption, while Section 4 shows experimental results concerning its performance.
Lastly, Section 5 draws some conclusions and outlines future works.

2 Why Object Identity

It is our strong belief that the Object Identity assumption is built-in the human way of think-
ing. Put it another way, people think under Object Identity: Whenever they talk about generic
objects giving them different dummy names (in fact, what they do is using placeholders -
or, more formally, variables - for such objects), they implicitly intend to refer to objects that
are different. Many examples drawn from everyday life clearly support such a claim. For in-
stance, when one says that “X and Y are brothers if they share a common parent”, he means
(and everybody understands without any difficulty) that X and Y are two different persons,
even if it is not explicitly stated. Analogously, when we define a bicycle as “an object made
up of, among other components, a wheel X and a wheel Y”, anybody listening to us auto-
matically avoids thinking of a mono-cycle as being a bicycle, even if X and Y could well
be associated to the very same wheel of the mono-cycle. More and more examples could be
made at demand.

Logics should hence reproduce as closely as possible, among others, such a character-
izing and fundamental feature. Unfortunately, this is not the case as, again, many examples

'Datalog is a logic language that can be seen as the function-free fragment of Prolog [1].
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Figure 1: Two structures in a blocks world.

can demonstrate. Let us refer to the First-Order Logics formalism, and in particular to the
space of clausal representations ordered by implication or, more specifically, by the widely
adopted ordering relationship induced by the generalization model of #-subsumption. The
clause p(X, X) V p(X,Y) V p(Y, Z) clearly involves more objects than the clause p(X, X),
nevertheless they are equivalent under #-subsumption, since the latter is clearly a subset of
the former, and the former may become a subset of (in fact, equal to) the latter through the
substitution { X/Y, X/Z}. Let us show a more practical example. Given the two structures in
a blocks world reported in Figure 1, we can represent them as follows:

E,: blocks (objl) <« part_of (objl,pl), part_of (ocbjl,p2),
on(pl,p2), cube(pl), cube(p2), small(pl),big(p2),
black (pl), stripes(p2).

FEy: blocks (obj2) « part_of (obj2,p3),part_of (ocbj2,p4),
on(p3,p4), cube(p3), cube(p4), small(p3), big(p4),
black (p4), stripes(p3).

Now, according to the algorithm given by Plotkin [9], the least general generalization (mean-
ing that no generalization more specific than this one can be found) under #-subsumption
between these two structures is as follows:

G: blocks (X) « part_of (X,X1), part_of(X,X2), part_of(X,X3),
part_of (X,X4), on(X1l,X2), cube(X1l), cube(X2), cube(X3),
cube (X4), small(X1l), big(X2), black(X3), stripes(X4).

As anybody straightforwardly notes, the most specific generalization of two structures, in-
volving two objects each, involves four objects, which is obviously almost counterintuitive!
Any person asked to tell what the two structures have in common would give two alternative
answers, that are ‘a small cube on a big cube or a black cube and a stripes cube’, each of
which captures only a portion of the correspondences, and specifically those that are consis-
tent with each other. In fact, this last answer is exactly what the least general generalization
under Object Identity [13] would yield:

G1: blocks (X) « part_of (X,X1), part_of(X,X2), on(X1l,X2),
cube (X1), cube(X2), small(X1l), big(X2).



G9: blocks (X) « part_of (X,X1), part_of (X,X2), cube (X1l),
cube (X2), black(X1l), stripes(X2).

Such tricky features carry on even when practical issues are taken into account. It has
been proved that in the space of clauses ordered by #-subsumption infinite unbounded strictly
ascending/descending chains exist, that avoid the possibility of having ideal refinement oper-
ators which in turn are fundamental for the efficiency and effectiveness of the theory revision
process [15]. On the contrary, this does not happen when the Object Identity assumption is
applied to the same space. A study on the well-known learning system FOIL found that, be-
cause of its not fulfilling the Object Identity assumption, problems may arise when trying to
infer definitions for particular settings [3].

As a concluding remark, it is worth pointing out that studies on Object Identity revealed
many nice properties and features that hold when such a bias is applied [5]. In particular, it is
important to underline that such a bias does not limit the expressive power of the representa-
tion language, since for any clause/program it is possible to find a set of clauses under Object
Identity that are equivalent to it [13].

3 The Matching Procedure

Before discussing our new procedure for computing € -subsumption, it is necessary to pre-
liminarily give some definitions on which the algorithm is based. In the following we will
assume C' and D to be clauses, such that C' is constant-free and D is ground.

Definition 3.1 (Matching substitution [11]). A matching substitution from a literal /; to a
literal [, is a substitution , such that [y = [5.

The set of all matching substitutions from a literal /; € C' to some literal in D is denoted
by [2]:

Let us now define a structure to compactly represent sets of substitutions.

Definition 3.2 (Multibind substitutions).

A multibind is denoted by X — T, where X is a variable and 7' # ( is a set of constants.
A multibind substitution is a set of multibinds © = {X; — T3,...,X,, — T,,} # 0, where
Vi#g: X #X;.

Informally, a multibind identifies a set of constants that can be associated to a variable,
while a multibind substitution represents in a compact way a set of possible substitutions for a
tuple of variables. In particular, a single substitution is represented by a multibind substitution
in which each constants set is a singleton (Vi : | T; | = 1).

Definition 3.3 (split). Given a multibind substitution © = {X; — T1,..., X, — T,},
split(©) is the set of all substitutions represented by O:

split(©) = {{X1 = cip,.. .. X — ¢, } |[VeE=1...n:¢, € Tp Ni=1...|T;|}.

Example 3.1. split({X — {1,3,4},Y — {7}, Z — {2,9}}) =
= {{X—-1Y->772-2}{X—->1Y->772-9}{X—-3Y 772}
{(X=3)Y =779} {X—-4Y 7722} {X—-4Y —>77—9}}



Deﬁnitign 3.4 (Union of multibind substitutions). The inion of two multibind substitutions
O={X-7TX1—-"T,...,.X, > T}and®" ={X - T" X, = T1,...,. X,, = Tp,}
is the multibind substitution defined as

OUO" ={X - T'UT"YU{X; — T;}1<i<n

Note that the two input multibind substitutions must be defined on the same set of vari-
ables and must differ in at most one multibind.

Definition 3.5 (merge). Given a set S of substitutions on the same variables, merge(S) is the
set of multibind substitutions obtained according to Algorithm 1.

Algorithm 1 merge(S)
Require: S: set of substitutions (each represented as a multibind substitution)
while Ju, v € S such that u # vand u v =t do
S = (S \ {u,v}) U{t}
end while
return S

Example 3.2.

merge({{X - 1,Y - 2,7 -3} {X—-1,Y -2 7—-4} (X - 1,Y -2, Z —5}})
=merge({{X — {1},Y — {2}, 7 — {3,4}},{X = {1},Y — {2}, Z — {5}}})
={{X = {1},Y — {2}, Z — {3,4,5}}}.

This way we can represent 3 substitutions with only one tree of substitutions.

Definition 3.6 (Intersection of multibind substitutions). The intersection of two multibind
substitutions ¥ = {X; — S1,..., X, — S, Y1 — Sui1,..., Y — Spim) and O =
{Xi—-"1,.... X, =T, Zy = Thy1,..., 2, — Ty}, where n,m, 1 > 0and Vj, k : Y; #
Zy., 18 the multibind substitution defined as:

YN0 ={X;— SiNT}tic1in U{Y; = Sutjtictm U{Zk = Tt r=1..a
iff vi=1...n:5;NT; # (); otherwise it is undefined.
Lemma 3.1. The N operator is monotonic in the set of variables. Specifically, it holds
ZLel<|Ene|=n+m+I

Proof. The I operator transposes in the result all the multibinds concerning Y;,7 =1...m
variables from 2, and all the multibinds concerning Z;, k = 1...[ variables from ©, whose
constant sets are all nonempty by definition. Moreover, it preserves all the multibinds con-
cerning X;,7 = 1...n variables common to > and ©, since all intersections of the corre-
sponding constants sets must be nonempty for the result to be defined. Hence: n,m,l > 0
and Vyj, k : Y; # Z) implies that [X 1O =n+m+ [ and both |X]| = n+m < [X M 0| and
Ol=n+1<|XM106|. O

The above M operator is able to check if two multibind substitutions are compatible (i.e.,
if they share at least one of the substitutions they represent). Indeed, given two multibind sub-
stitutions > and ©, if XM O is undefined, then there must be at least one variable X, common



to X and O, to which the corresponding multibinds associate disjoint sets of constants, which
means that it does not exist a constant to be associated to X by both ¥ and ©, and hence a
common substitution cannot exist as well.

The M operator can be extended to the case of sets of multibind substitutions. Specifically,
given two sets of multibind substitutions S and 7, their intersection is defined as the set of
multibind substitutions obtained as follows:

SNT={¥ne|x2es50ecT}

Note that, whereas a multibind substitution (and hence an intersection of multibind substitu-
tions) is or is not defined, but cannot be empty, a set of multibind substitutions can be empty.
Hence, an intersection of sets multibind substitutions, in particular, can be empty (which
happens when all of its composing intersections are undefined).

Given a clause, multibind, multibind substitution or set of multibind substitutions O, in
the following we will denote by vars(QO) the set of variables that are present in O.

Proposition 3.2. Let C = {ly,...,l,} and Vi = 1...n : T; = merge(uni(C,l;, D)); let
Si=TiandVi=2...n:8; = 8;_1 N7, C O-subsumes D iff S,, # 0.

Proof.

(=) Suppose (ad absurdum) that S,, = (). Then Ji ¥ Vi,j,1 < i< i< j<n:S8 #
OAS; =0.Butthen S; =S;_; NT; = ) = T; = (), i.e. there is no matching substitution
for the literal /;. Thus, C' cannot §-subsume D, which is an absurd since C' #-subsumes D
by hypothesis.

(<) S, #0=Vi=1...n:T; # D N3O € S,,, © multibind substitution.
Now, V0 € split(©) : wars(d) = wvars(©) = (being M monotonic) | Jvars(7;) =
Jwvars(l;) = vars(Jl;) = vars(C'). Each constant ¢ such that X — ¢ € 0, is drawn
from a constant set K such that X — K € ©O. K is obtained by construction as the

intersection of all constant sets K; such that X — K belongs to some X; € 7, for each
7; including variable X . Then, it holds C C D, i.e. C' f-subsumes D.

O

This leads to the #-subsumption procedure reported in Algorithm 2.

Algorithm 2 matching(C, D)

Require: C' : ¢y« c1,¢9,...,C, D :dy «— dy,do,...,d,: clauses
if 36, substitution such that cydy = dy then
S() = {90};

for::=1tondo
S; = S;—1 M merge(uni(C, ¢;, D))
end for
end if
return (S,, # 0)

We now extend the above concepts to obtain substitutions such that C' §-subsumes D
under Object Identity (C' 6p;-subsumes D).



Definition 3.7 (Injectivity).
A substitution {X; — ¢1,...,X,, — ¢,} is injective iff Vi # j : ¢; # ¢;.
A multibind substitution © is injective iff 30 € split(©), and 6 is injective.

Definition 3.8 (Intersection of multibind substitutions under Object Identity). The in-
tersection of two multibind substitutions under Object Identity (denoted by M) is defined
as in Definition 3.6, but with the additional requirement that the result must be an injective
multibind substitution; otherwise, it is undefined.

A result analogous to Proposition 3.2 holds under Object Identity as well:

Proposition 3.3. Let C = {l,,...,l,}. Letusdefine¥i = 1...n : T, = merge(uni(C,l;, D));
Si=TiandVi=2...n:8; = 8;_1 Nor T;. C Bor-subsumes D iff S,, # (.

Proof. Analogous to Proposition 3.2, but choosing for 6, ;-subsumption exactly the injective
substitution (that exists by hypothesis). L

Replacing in Algorithm 2 the ' operator with the My operator yields an algorithm that
computes the ;-subsumption between two clauses.

4 Empirical results

In order to verify its efficiency, our algorithm was compared to Django, that, as already stated,
had in turn been compared to the other algorithms by its authors. However, the comparison
was not straightforward since Django performs a #-subsumption test, whereas our procedure
is designed to work under 6 ;-subsumption. To overcome such difficulty, we modified the
body of Django input clauses by adding literals that force it to fulfill the OI assumption. In
particular, given a clause C, we added to its body a literals diff (¢,¢') (meaning that the two
terms must be different) and a literal diff (#',t¢) (expressing that difference is a symmetric
relationship)? for all possible pairs of terms ¢ and ¢’ in C. Note that the above inequalities
have to be stated also among constants (even if Django already ensures them), in order to
allow subsumption. In fact, Django (as well as our procedure) requires one of the two clauses
to be a rule (and hence to contain variables only), and the other to be an example (and hence
to contain constants only).

Example 4.1. The clause
atom(X) «— bond (X, Y, 2), bond(X,zZ,W), bond(X,W,Y).

is input to Django augmented by the Object Identity constraints
diff(X,Y),diff(X,2),diff(X,wW),diff(y,z),diff(y,w),diff(Z, W)
while the example

atom(a) «— bond(a,b,c), bond(a,c,d).

is input to Django augmented by the Object Identity constraints
diff(a,b),diff(b,a),diff(a,c),diff(c,a),diff(a,d),diff(d,a),
diff (b,c),diff(c,b),diff(b,d),diff(d,b),diff(c,d),diff(d,c).

’Literals expressing these symmetric inequalities were introduced exclusvely in the representation of the
examples. In rule clauses, it suffices to include one of them since this does not affect (the correctness of) the
matching algorithm.
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Figure 2: 0p-subsumption performance for Django (msecs).

The experiment for testing the algorithm efficiency is derived from the standard dataset
concerning the real-world problem of Mutagenesis [14]. Artificial hypotheses were generated
according to the procedure reported in [8]. For given m and n, such a procedure returns an
hypothesis made up of m literals bond(X;, X;) and involving n variables, where the variables
X; and X in each literal are randomly selected among n variables {X1,..., X, } in such a
way that X; # X and the overall hypothesis is linked [6]. The cases in which n > m+1 were
not considered, since it is not possible to build a clause with m binary literals that contains
more than m -1 variables and that fulfills the linkedness constraint imposed by the previously
described construction method.

Specifically, for each (m,n) pair (1 < m < 10, 2 < n < 10), 10 artificial hypotheses
were generated and each was checked against all 229 examples provided in the Mutagenesis
dataset. Then, the mean performance of each hypothesis on the 229 examples was computed,
and finally the computational cost for each (m,n) pair was obtained as the average 0o;-
subsumption cost over all the times of the corresponding 10 hypotheses. The experiments
were performed on a PC platform equipped with an Intel PentiumIIl 800 MHz processor
and running the Linux operating system. Figures 2 and 3 report the performance obtained by
Django and by our algorithm (respectively) on the 6y ;-subsumption tests for the Mutagen-
esis dataset. Figure 4 shows the difference between the two performances. All timings are
measured in milliseconds.

It is straightforward to note that both algorithms show the worst performance in the re-
gion around the diagonal, corresponding to hypotheses with i literals and ¢ + 1 variables.
Such hypotheses are particularly challenging for the 6 ;-subsumption test since their literals
form a chain of variables (because of linkedness). However, while Django has a steady and
continuous rise of the computational cost as long as n and m grow, our matching algorithm,
although performing slightly worse on the easiest problems (the region on the right-hand side
of the diagonal), shows a neat improvement in computational times (as the smoother shape
and lower peaks of the plot in Figure 3 demonstrate). It should also be noted that the critical
region (identified by higher peaks) is located at higher (m, n) pairs than Django, and that the
increase rate is lower than Django (actually, it even shows a decrease for m = n = 10).
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Figure 4: Difference in performance between Django and Matching (msecs).

5 Conclusions and Future Work

We proposed a new algorithm for checking 6 ;-subsumption. Preliminary results suggest that
it is able to improve the time performance with respect to other state-of-the-art systems. The
first prototype of the algorithm, implemented in Prolog, is currently used in INTHELEX [4],
a system for inductive learning from examples based on the Object Identity assumption, that
is employed in the EU project COLLATE to learn rules for classification and interpretation of
historical archive material. The current implementation uses the same search strategy as SLD
resolution. Efficiency of the algorithm could be improved implementing it in a procedural
language, such as C, and using heuristics that help in choosing the best literal to take into
account at any step.

Future work will concern a more extensive experimentation, using other and more chal-
lenging datasets, aimed at carrying out a better analysis of the complexity of the presented
algorithm.
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