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The general problem…

Huge number of Web sites and volume of on-line 
data (information overloading)

Users overloaded with a large amount of 
information

Difficulty in finding relevant documents

Consequence: searching may be time 
consuming!

Demand for automated user support
Need for intelligent solutions able to support 
users in finding documents according to their
interests
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…and problems in e-commerce

Critical aspect in e-commerce
Millions of products for sale
Customers overloaded with a large amount of product 
information
Searching may be time consuming!

User interests useful to 
achieve personalization

Need for personalized solutions able 
to support customers in retrieving 
relevant products
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User Profiling
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Personalization: User Profiles

USER PROFILE: RAPPRESENTAZIONE 
STRUTTURATA DEGLI INTERESSI E DELLE 

PREFERENZE DELL’UTENTE

Questionnaire-based personalization
La definizione manuale di profili è un processo noioso per 
gli utenti
Gli utenti non aggiornano i loro profili
La personalizzazione potrebbe basarsi su dati non 
affidabili

Induzione di modelli di preferenze:
SUPERVISED MACHINE LEARNING
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User Preferences: categories

Preferences

Arts & Photography
Children’s books

Computers & Internet
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User Preferences: items

Preferences

Arts & Photography
Children’s books

Computers & Internet

Book description at Amazon.com

content-based 
recommendations 
by learning from 

TEXT
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The system

Content-based item recommending on the basis 
of rates given by users

Naïve Bayes text classification to assign a score
(level of interest) to  items according to the user 
preferences

Performance comparable to more complex algorithms
Increasing popularity in text classification

Result: user profile containing the probabilistic 
model (words + frequencies) learned by the 
classifier

ITem Recommender (ITR)
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Document Representation

Valore booleano che indica la presenza di una 
parola
Frequenza della parola all’interno del documento
Informazione aggiuntiva (word position, n-
grams,…)

Molti metodi di text learning usano la 
reppresentazione bag-of-words
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Document Representation: bag of words

Journal of Artificial
Intelligence 
Research

JAIR is a referred
journal, covering all
areas of Artificial
Intelligence, which is
distribuited free of 
charge over the 
Internet. Each volume 
of the journal is also
published by Morgan
Kaufman…

Learning

Journal

Intelligence

Text

Agent

Internet

…

volume

0

3

2

0

0

1

…

1
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Bag of words and slots

JAIR is a referred
journal, covering all
areas of Artificial
Intelligence, which is
distribuited free of 
charge over the 
Internet. Each volume 
of the journal is also
published by Morgan
Kaufman…

Journal

Intelligence

Artificial

Research

1

1

1

1

Journal

Intelligence

Artificial

…

2

1

1

…

Journal of Artificial
Intelligence 
Research

Slot 
“title”

Slot 
“abstract”
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Book Information at uk.bol.com

Book 
description 

Utilizzo di tecniche basate sul contenuto: applicazione di
metodi di text categorization alla descrizione testuale dei libri
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Instance description

{lord:1, ring:1}{lord:1, ring:1}

{j_tolkien:1}{j_tolkien:1}

{frodo:1, 
lord:1, 
ring:2,…}

{frodo:1, 
lord:1, 
ring:2,…}

Instance

(book)

Instance

(book)

AnnotationAnnotation

TitleTitle

AuthorsAuthors

Book recommending on the Web

Tokenization
Stopwords
Stemming

Bag of Words 
(BOW)

Book description

3

User Rates:1-10
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XML a beginner’s guide

XML is the latest "buzzword" on the 
Internet. It's a rapidly maturing technology
with powerful real-world applications, 
particularly for the management, display 
and organization…

TEXTUAL ANNOTATION

BOW Extraction 

xml, a ,beginner, s, guide, xml, is, the, 
latest, buzzword, on, the, internet, it, s, a, 
rapidly, maturing, technology, with, 
powerful, real,world, applications, 
particularly, for, the, management, display, 
and, organization…

xml, beginner, guide, xml, buzzword, 
internet, maturing, technology, powerful, 
real, world, applications, management, 
display, organization…

xml, begin, guid, xml, buzzword, internet, 
matur, technolog, power, real, world, applic, 
manag, displa, organ…

{begin: 1, xml: 2, guid: 1, buzzword: 1, 
internet: 1, matur: 1, technolog: 1, power:1, 
real: 1,world: 1, applic: 1, manag: 1, displa: 
1, organ: 1 …}

tokenization Stopwords
elimination Stemming Word Count

BAG OF WORDS
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Bayes’ Theorem

Hh
DP

hPhDP
DhP

∈

=
)(

)()|(
)|(

D: training data

h: hypothesis from the space H
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Bayesian Learning

The learner considers a set H of candidate 
hypotheses and tries to find the most probable
hypothesis by taking into account the observed
data D

Maximum A Posteriori (MAP) hypothesis

Hh
hPhDP

DP
hPhDP

DhPhMAP

∈
=

=

≡

)()|( argmax       
)(

)()|( 
argmax      

)|( argmax
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Bayesian Learning

TEXT CLASSIFICATION

H={“user-likes”, “user-dislikes”}

Each instance (document) is represented
by n attributes (keywords) {a1,a2,…,an}

Hh
hPhaaaPh

aaaP
hPhaaaP

h

aaahPh

j

jjnMAP

n

jjn
MAP

njMAP

∈
=

=

=

)()|,...,,( argmax
),...,,(

)()|,...,,( 
argmax

),...,,|( argmax

21

21

21

21
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Bayesian Learning

Indipendence assumption

Hh

haPhPh

j

n

i

jijMAP

∈

= ∏
=1

)|()( argmax

:Classifier Bayes Naive

The probabilities are estimated from data
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S = {s1, s2, …, s|S|} è il set degli slots

Classification Phase

Ogni libro è un vettore di bag of words (BOW), una BOW 
per ogni slot
Ogni slot è indipendente dagli altri

Le probabilità a posteriori per un libro di sono così calcolate:

tk è la kma word (che occorre nkim volte nella BOW bim)

Title: {lord :1, ring :1}

Authors: {j_tolkien :1}

Annotation: {epic :4, novel :2, lord :2, ring :3, elf :2,…}

bim è la BOW nello slot sm dell’istanza di
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Acquisizione voti

Ogni utente giudica
un set di libri di

training in accordo
con i suoi gusti, 

esprimendo un voto
da 1 a 10

Ogni utente giudica
un set di libri di

training in accordo
con i suoi gusti, 

esprimendo un voto
da 1 a 10

Sulla base dei giudizi dell’utente, il sistema apprende le sue 
preferenze su un particolare tipo di documenti in merito al topic
di ricerca 



11

Learning user profiles in digital libraries 21

  
||

)(ˆ

||

1

TR
cP

TR

i

i
j

j

∑
==
ω

∑∑
==

==
||

1

||

1
||),(),,(

TR

i
im

i
jmj

TR

i
kim

i
jmjk bscLnsctO ωω

  
),(

),,(
),|(ˆ

mj

mjk
mjk scL

sctO
sctP =

Training

C = {c+, c-}
C+ likes rates 6-10
C– dislikes rates 1-5

User ratUser ratees s rrii Weighted InstancesWeighted Instances
iiii r
+−+ −=

−
= ωωω 1

9
1

training set cardinalitytraining set cardinality

Learning user profiles in digital libraries 22

Example of ITR Profile

Profile for User: 117
Category: ”Computer & Internet”

The terms of the 
profile are 

ranked according 
to a strength

measuring the 
discriminatory 

power of a word 
in classifying a 

book

The terms of the The terms of the 
profile are profile are 

ranked according ranked according 
to a to a strengthstrength

measuring the measuring the 
discriminatory discriminatory 

power of a word power of a word 
in classifying a in classifying a 

bookbook

( ) ⎟
⎟
⎠

⎞
⎜
⎜
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⎛
=

−

+
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log,
jk

jk
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Personalized Searching       1/2

Personalization
of the search process 
using ITR PROFILES

PersonalizationPersonalization

of the search process of the search process 

using ITR PROFILESusing ITR PROFILES
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Personalized Searching       2/2

Result set ranked by the 
classification value P(c+|di)

computed by ITR

Result set ranked by the Result set ranked by the 
classification value classification value P(cP(c++||ddii))

computed by ITRcomputed by ITR
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ITR & VIKEF

ITem Recommender (ITR) currently integrated in 
the Personalization component for context-aware 
access, dissemination, visualization, knowledge 
sharing and collaboration (WP6) within the 6FP 
Project IST-2003-507173 VIKEF 

Virtual Information 
and Knowledge 
Environment 
Framework

Learning Preferences of Users 
Accessing Digital Libraries

O. Licchelli*, P. Lops*, G. Semeraro*, 
L. Bordoni** and F. Poggi**

(*)  Dipartimento di Informatica, Università di Bari, Italy
(**) Enea/Uda-Adivisor, Roma, Italy



14

Learning user profiles in digital libraries 27

Overview

Introduction
User Profiling 
The COVAX project
The Profile Extractor system in the COVAX 
architecture

Extraction of User Profiles: the learning 
process
Rules generation process
Classification process

Improve searching in COVAX
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Introduction

The World Wide Web has the potential to be the 
largest information source for Digital Libraries

Limit of the Web: information overload problem

Possible solution: personalization on the basis of the 
preferences of individual users
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User Profiling

Personalization within a Digital Library can 
occur along several directions:

Explicit and implicit profiling

Static and dynamic profiling

Personal annotations

Person-dependent system behaviour
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The goal of the COVAX project

COVAX (5FP IST-1999-11820) - Contemporary 
Culture Virtual Archives in XML - is a global 
system for search and retrieval, that increases 
accessibility via Internet to electronic resources 
regardless of their location.

HOW?

Using Web services for search and retrieval of 
documents 

Making accessible over the Internet existing 
documents in libraries, archives and museums

Implementing standards to guarantee 
interoperability among systems

www.covax.org
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The Profile Extractor system 
in the COVAX architecture

Profile Extractor

XWEKA
Learning System

logAnalyzer Conversion Tool

Partner Server

Original Data

Web Server

Tamino / SQL server

Http 
Client

Partner Server

Tamino / SQL Server

Partner Server
Web Server

Connector

Multilingual User 
Interface

Metasearch

Administration Tools

Covax Server
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XWEKA
Learning System

The Profile Extractor architecture

…aggregates 
users into 

communities and 
creates 

association rules

…contains 
discovered  rule 

sets, user profiles 
and usage patterns 

in XML format

…creates user
profiles, according to 

the set of 
classification rules

…is a system 
that induces

rules for
extracting 

user features

…an XML compliant
version of WEKA, a 
machine learning tool

developed at the 
University of Waikato…is the layer 

responsible for the 
extraction of data 
required for the 
learning process



17

Learning user profiles in digital libraries 33

Extraction of User Profiles: a ML process

Input: user instances classified in categories on the 
basis of preferences, abilities and goals.

Method: supervised learning techniques (decision 
trees, PART) provided by XWEKA.

Output: classification rules.
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Collection types:
Bibliographic (libraries)
Archive 
Museum 
Electronic_Text
Databases:
Spanish libraries
ENEA scientific bibliographic 
Naval Museum Computerized 
Library Museum Fronfeste Leather 
Prix Multimedia Austria 
Blekinge Elektroniska Textcenter 
etc…

Profile Extractor: Input

Personal Data

Interaction Data

User_ID 
User_Type (citizen, researcher, 
scholar)

Further personal data are not 
used for privacy problems

∀ Collection 
and Database

Number of Searches
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The classification rule generation process

Unclassified
Instances

Unclassified
Instances

DTDDTD

Training
Instances

Training
Instances XML-compliant

Learning System
Rule
Sets

Rule
Sets

Expert

DTDDTD

X
M
L
-
I
/
O
-

W
R
A
P
P
E
R

Interaction
Data

Personal
Data
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Classification rules: an example

…is a rule set 
expressed as 

disjunctions of 
conditions

Precondition of a rule is a series 
of tests, just like the tests at 

nodes in decision trees

Conclusion gives 
the class that 

applies to 
instances covered 

by that rule
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Classification process

InstancesInstances XML-
compliant

CLASSIFIER

XML-
compliant

CLASSIFIER

User Profile

Personal Data
Interaction Data

Bibliographic: yes
Archive: no

…..
Museum: yes

User Profile

Personal Data
Interaction Data

Bibliographic: yes
Archive: no

…..
Museum: yes

Bibliographic

Yes

Bibliographic

Yes

Archive

No

Archive

No

…..

Museum

Yes

Museum

Yes

Rule
Sets

Rule
Sets
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User Profile: an example

User Data

The list of the 4 
collections and the 

degree of user 
interest

The final result of the 
user classification -
the user’s favourite 

categories
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How to improve searching in COVAX
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Scenario 1: user profile not available
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Scenario 2 – user profile available
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