<? PRACTISING XML ?>

Luigl lannone
&
Daniele Capursi

. XML Tutorial _
it i\':;

~ Overview

e Building DTDs

e DTDs limits

e XML Schemas

e Importing pre- existing Schemas

e Namespaces
e Java & XML

2 XML Tutorial -

*” DTDs in short..

Describe the XML document structure:
e Allowed elements

e Allowed attributes for each element
e Allowed values for attributes

* Proper nestings of elements

* Entities definitions (optional)

2 XML Tutorial -

= .. DTDs in short

Two ways of defining them:

* In an external file referencing it from the
XML Document

* Embedding the DTD definition inside the
document itself (bad solution, does not
allow reuse of same DTD for more than

one document)

Z XML Tutorial

*” DTD inside the XML Document

<?xml version="1.0" encoding="UTF- 8"?>
<IDOCTYPE Book |
<IELEMENT Author (#PCDATA)>
<IELEMENT Title (#PCDATA)>
<!ELEMENT Book (Author+, Title, Editor)>
<IELEMENT Editor (#PCDATA)>
1>
< Book>
<Author>Stephen King</Author>
<Title>IT</Title>
<Editor>Sperling & Kupfer</Editor>
</ Book>

XML Tutorial

From Internet Explorer

a D:%Documents and Settings ' LuigDocumentit.Gestione della Conscenza

| File Modifica Visualizza FPreferii Stument 7

Clhdera v = ¥ @ taf ‘ @Cerca Gl preferiti g3Crmruc:xlm:u_;;i.a |%T =

| Indirizzo I@ DoDiocuments and SettingstLuighDocumentityzestione della Conscenza o

<?xml version="1.0" encoding="UTF-8" ?>>
< IDOCTYPE Book {View Source for fulf doctype...)=
- < Book =
< Author=Stephen King</Author:=
<Title=IT</Title>
< Editor>=Sperling & Kupfer</Editor:>
<_fBook =

XML Tutorial

* DTD defined externally

<?xml version="1.0" encoding="UTF- 8"?>
<IDOCTYPE Family SYSTEM "Family.dtd">
< Family>

<Parent name="Leonardo"/ >

< Parent name="Maria"/ >

< Child name="Luigi"/ >
</Family>

XML Tutorial -—
i f 7

Let us build a DTD

Objective:

We want to write XML documents that
describe a family

XML Tutorial —
i f 7

First idea

A family is composed by parents and
children;

each one of them has a name:

Family.dtd

XML Tutorial —
i f 7

*” Problems with this DTD

We could have some weird families, e.g.:

ExamplesDTDWeirdFamily.xml

z XML Tutorial

" Fine Tuning our DTD

A family is compound by no more than two
parents and zero or more children:

FamilyWithFixedNumberOfParents.dtd

XML Tutorial

A family

A valid family could be:

ut also:

ExamplesDTDMyFamily.xml
ExamplesDTDMyFamily.xml
ExamplesDTDWeirdFamilyWithTwoMaleParents.xml

XML Tutorial

*" Fine Tuning again

We want that a family has:
e One husband
e One wife

e O or more children

2 XML Tutorial

~ So we need...

e Two different elements in order to
distinguish husband and wife

e The child element (as before)

FamilyWithHusbandAndWife.dtd

* What's wrong with that?

e Repeated ATTLIST for each attribute that is
owned by different elements (in our case
“name”)

e Cannot invert Husband and Wife saving
document validity against this DTD (nheed a
more complicated one enumerating all
combinations
FamilyWithHusbandAndWifelnAnyOrder.dtd)

Z XML Tutorial

*” What do we need?

e Some support for abstract datatypes

e Some support for writing concisely
structures more complicated than simple
sequences

e .. We want it in XML itself

XML Tutorial

*” What do we need?

S cr s : 5%
&5 Describing the Family by means of @
XML Schema

* Let us create a complex type that abstracts
all the common attribute for family
members

e et us create elements for the different
members of the family

* Let us put them all together in the
structure

Examples/XML Schema/Family.xsd

z XML Tutorial

" still problems

e Parents’ sequence order is still important -
we could use the “Choice” Model but it
allows still weird families

e We could use the all Model and it works
fine

ExamplesXML SchemaWeirdFamilyWithSchema.xml
Examples/XML Schema/MyFamilyWithRevisedAgainSchemaWithInvertedParentOrder.xml
Examples/XML Schema/MyFamilyWithRevisedAgainSchemaWithInvertedParentOrder.xml
Examples/XML Schema/MyFamilyWithRevisedAgainSchemaWithInvertedParentOrder.xml

z XML Tutorial .

~ Short review

e \We created an abstract datatype for
common features of elements (impossible
with DTD)

e \We worked out the problem of describing
data structures that are more complex
than a sequence (very complicated with
DTD)

e We made it in XML

XML Tutorial -—
i f 7

*” More nice features of XML Schema

 Import

e Built-in Namespace support

Z XML Tutorial .

Import allows

e Sharing Datatypes, Elements and
Attributes across several Schemas

e Build our Schemas incrementally starting
from one (or more) core Schemaf(s) and
building new ones on it (them)

z XML Tutorial

~ Namespaces usefulness

Namespaces allow us to distinguish in an
XML document between two items with the

same name, but defined twice or more
within different Schemas

Objective:

We want to build up some XML Documents
that represents data for exchanging
iInformation about matches in the very
famous Italian game called Fantacalcio

XML Tutorial

e Build our XML Schema from scratch

* Reusing pre- existing Schemas

*” What do we have?

e A previously released schema by FIGC
about players and teams

e Qur application that will analyze
Fantacalcio players teams accepting them
iIn a fomat that looks like
<Formazione><Giocatore></ Giocatore><
Giocatore>...</Formazione>

z XML Tutorial .

*” FICG Schema embeds:

e Two simple types:
—Ruolo
—NomeSguadraSerieA

* One complex type: GiocatoreDiSerieA

e Two Elements:
—Formazione
—Giocatore (with type GiocatoreDiSerieA)

XML Schema by FIGC

Formazione $ E jEI— Giocatore

S—

Fosa dei giocator di una 11 . o
Squadra di Setie &

=25

|

Mame Type
souadraDidppanenenza. f ffingcNomeSguadraSeried,

ruolalnCampo fige:Fuolo

| se Walue
equired |
required

2 XML Tutorial

*” Our Schema will

e Import the former one by FICG and use the
Giocatore element

e Use the Formazione Element to indicate
Fantacalcio players’ team.

e Import the FIGC Schema in our
DummyFantacalcio Schema

e Create our Formazione Element

2 XML Tutorial

Problems

e \We should have a conflict between the
Formazione Element from FIGC Schema
and the one from DummyFantacalcio

Namespace definition works it out!

* What did we get?

e We could reuse an “officially” pre-released
Schema without any change to it, so
gaining:

— High reuse
— Standard compliance for our application

e \We could keep the accepted format for our
application (if already existing) - this
means less code to write or change

XML Tutorial —
i f 7

* Ava & XML

Java support for XML includes:

e JAX- P (Java API for XML Processing)
e JAX-M (Java API for XML Messaging)
e JAX- RPC (Java API for XML RPC)

e JAX- B (Java API for XML Binding)

i XML Tutorial
£, By i .

=7 JAX-P what is it?

The Java APl for XML Processing
(JAXP) Is for processing XML
data using applications written
In the Java programming
language.

Document Manipulation by
e Document Object Model (DOM)

e Simple Application programming interface
for eXtensible mark- up language (SAX)

Factory Design Pattern

e Definition
Provide an interface for
creating families of

related or dependent ——
objects without
SpeCifyi ng their Absiractinterface il Abstradinterface

concrete classes?.

1

"\
M H A W
=< realize == 3 1

Conc retelmplementati on

IFrom

http://www.dofactory.com/patterns/PatternAbstract.aspx

2 XML Tutorial

= JAX-P Factories

The JAXP APl package contains two vendor-
neutral factory classes:

o SAXParserFactory
e DocumentBuilderFactory

Ability to plug in an XML implementation
offered

The implementation depending on
javax.xml.parsers.SAXParserFactory and
javax.xml.parsers.DocumentBuilderFactory
system properties. The default values
point to Sun’s implementation.

" JAX-P Packages

The SAX and DOM APIs are defined by XML- DEV
group and by the W3C,respectively. The
libraries that define those APIs are:

e javax.xml.parsers: common interface for
different vendors’ SAX and DOM parsers.

e org.w3c.dom classes for all of the
components of a DOM.

e org.xml.sax basic SAX APIs.
e javax.xml.transform XSLT APIs.

=)) The “Simple API” for XML)
(SAX)

e BEvent-driven, serial- access mechanism
e Hement- by- element processing.

e Reads and writes XML to a data repository or
the Web (URL).

 For server-side and high- performance apps.
Drawbacks:

e Hard event model to manage even simple
situations

e Generally an easier APl to use.
e Tree structure of objects.

e |deal for interactive applications because the
entire object model is present in memory.

Drawbacks

* In memory model threatens overall
performance

XML Tutorial

SAX Architecture

SAXParger
Factory

Error
Handier

OTD
Hardier

Exntily |
Resalver |

Java WS Tutorial

DocumersdBuibkder
FAChOFY

‘Oocumont (DOM)'

LoCL e

|ﬂ _.-
H ildar e

Ir .
Tarsrmt | e

T
e "EiEarEl

Java WS Tutorial

Trensformer

.-"“'I ;

Hasult

Transformatiaon
Instructions

Java WS Tutorial

XML Tutorial —
i f 7

" Loading DOM sample

Loading DOM.doc

XML Tutorial —
i f 7

* Further Readings

e Java Web Services Tutorial:

http://java.sun.com/webservices/downloads/webservicestutorial.html

