
1

<? PRACTISING XML ?>
Luigi Iannone

&

Daniele Capursi

X M L T u t o r i a l

2

Overview

• Building DTDs

• DTDs limits

• XML Schemas

• Importing pre- existing Schemas

• Namespaces

• Java & XML

X M L T u t o r i a l

3

DTDs in short...

Describe the XML document structure:

• Allowed elements

• Allowed attributes for each element

• Allowed values for attributes

• Proper nestings of elements

• Entities definitions (optional)

X M L T u t o r i a l

4

… DTDs in short

Two ways of defining them:

• In an external file referencing it from the
XML Document

• Embedding the DTD definition inside the
document itself (bad solution, does not
allow reuse of same DTD for more than
one document)

X M L T u t o r i a l

5

DTD inside the XML Document

< ?xm l vers ion = "1.0" en cod in g= "UTF- 8"?>
< !DOCTYPE Book [

< !ELEMENT Au th or (#PCDATA)>
< !ELEMENT Tit le (#PCDATA)>
< !ELEMENT Book (Au th or+ , Tit le, Ed itor)>
< !ELEMENT Ed itor (#PCDATA)>

]>
< Book>

< Au th or> Step h en Kin g< / Au th or>
< Tit le> IT< / Tit le>
< Ed itor> Sp er lin g &am p ; Ku p fer< / Ed itor>

< / Book>

X M L T u t o r i a l

6

From Internet Explorer

X M L T u t o r i a l

7

DTD defined externally

< ?xm l vers ion = "1 .0" en cod in g= "UTF- 8"?>
< !DOCTYPE Fam ily SYSTEM "Fam ily.d td ">
< Fam ily>

< Paren t n am e= "Leon ard o"/ >
< Paren t n am e= "Maria"/ >
< Ch ild n am e= "Lu igi"/ >

< / Fam ily>

X M L T u t o r i a l

8

Let us build a DTD

Objective:

We want to write XML documents that
describe a family

X M L T u t o r i a l

9

First idea

A family is composed by parents and
children;

each one of them has a name:

Family.dtd

X M L T u t o r i a l

10

Problem s with this DTD

We could have some weird families, e.g.:

WeirdFamily.xml

ExamplesDTDWeirdFamily.xml

X M L T u t o r i a l

11

Fine Tuning our DTD

A family is compound by no more than two
parents and zero or more children:

FamilyWithFixedNumberOfParents.dtd

X M L T u t o r i a l

12

A fam ily

A valid family could be:

MyFamily.xml

But also:

WeirdFamilyWithTwoMaleParents.xml

ExamplesDTDMyFamily.xml
ExamplesDTDMyFamily.xml
ExamplesDTDWeirdFamilyWithTwoMaleParents.xml

X M L T u t o r i a l

13

Fine Tuning again

We want that a family has:

• One husband

• One wife

• 0 or more children

X M L T u t o r i a l

14

So we need…

• Two different elements in order to
distinguish husband and wife

• The child element (as before)

FamilyWithHusbandAndWife.dtd

X M L T u t o r i a l

15

What ’s wrong with that?

• Repeated ATTLIST for each attribute that is
owned by different elements (in our case
“name”)

• Cannot invert Husband and Wife saving
document validity against this DTD (need a
more complicated one enumerating all
combinations
FamilyWithHusbandAndWifeInAnyOrder.dtd)

X M L T u t o r i a l

16

What do we need?

• Some support for abstract datatypes

• Some support for writing concisely
structures more complicated than simple
sequences

• … We want it in XML itself

X M L T u t o r i a l

17

What do we need?

X M L T u t o r i a l

18

Describing the Fam ily by m eans of
XML Schem a

• Let us create a complex type that abstracts
all the common attribute for family
members

• Let us create elements for the different
members of the family

• Let us put them all together in the
structure

(Family.xsd)

Examples/XML Schema/Family.xsd

X M L T u t o r i a l

19

St ill problem s

• Parents’ sequence order is still important -
we could use the “Choice” Model but it
allows still weird families
WeirdFamilyWithSchema.xml

• We could use the all Model and it works
fine
MyFamilyWithRevisedAgainSchemaWithInvertedParentOrder
.xml

ExamplesXML SchemaWeirdFamilyWithSchema.xml
Examples/XML Schema/MyFamilyWithRevisedAgainSchemaWithInvertedParentOrder.xml
Examples/XML Schema/MyFamilyWithRevisedAgainSchemaWithInvertedParentOrder.xml
Examples/XML Schema/MyFamilyWithRevisedAgainSchemaWithInvertedParentOrder.xml

X M L T u t o r i a l

20

Short review

• We created an abstract datatype for
common features of elements (impossible
with DTD)

• We worked out the problem of describing
data structures that are more complex
than a sequence (very complicated with
DTD)

• We made it in XML

X M L T u t o r i a l

21

More nice features of XML Schem a

• Import

• Built- in Namespace support

X M L T u t o r i a l

22

Im port allows

• Sharing Datatypes, Elements and
Attributes across several Schemas

• Build our Schemas incrementally starting
from one (or more) core Schema(s) and
building new ones on it (them)

X M L T u t o r i a l

23

Nam espaces usefulness

Namespaces allow us to distinguish in an
XML document between two items with the

same name, but defined twice or more
within different Schemas

X M L T u t o r i a l

24

Exam ple

Objective:

We want to build up some XML Documents
that represents data for exchanging

information about matches in the very
famous Italian game called Fantacalcio

X M L T u t o r i a l

25

Opt ions

• Build our XML Schema from scratch

• Reusing pre- existing Schemas

X M L T u t o r i a l

26

What do we have?

• A previously released schema by FIGC
about players and teams

• Our application that will analyze
Fantacalcio players teams accepting them
in a fomat that looks like
< Formazione> < Giocatore> < / Giocatore> <
Giocatore> …< / Formazione>

X M L T u t o r i a l

27

FICG Schem a em beds:

• Two simple types:
–Ruolo
–NomeSquadraSerieA

• One complex type: GiocatoreDiSerieA

• Two Elements:
–Formazione
–Giocatore (with type GiocatoreDiSerieA)

X M L T u t o r i a l

28

XML Schem a by FIGC

X M L T u t o r i a l

29

Our Schem a will

• Import the former one by FICG and use the
Giocatore element

• Use the Formazione Element to indicate
Fantacalcio players’ team.

X M L T u t o r i a l

30

Steps

• Import the FIGC Schema in our
DummyFantacalcio Schema

• Create our Formazione Element

X M L T u t o r i a l

31

Problem s

• We should have a conflict between the
Formazione Element from FIGC Schema
and the one from DummyFantacalcio

Namespace definition works it out!

X M L T u t o r i a l

32

What did we get?

• We could reuse an “officially” pre- released
Schema without any change to it, so
gaining:
– High reuse
– Standard compliance for our application

• We could keep the accepted format for our
 application (if already existing) - this
means less code to write or change

X M L T u t o r i a l

33

Java & XML

Java support for XML includes:

• JAX- P (Java API for XML Processing)

• JAX- M (Java API for XML Messaging)

• JAX- RPC (Java API for XML RPC)

• JAX- B (Java API for XML Binding)

X M L T u t o r i a l

34

JAX­P what is it?

The Java API for XML Processing
(JAXP) is for processing XML

data using applicat ions writ ten
in the Java programming

language.

X M L T u t o r i a l

35

JAX­PJAX­P

Document Manipulation by

• Document Object Model (DOM)

• Simple Application programming interface
for eXtensible mark- up language (SAX)

X M L T u t o r i a l

36

Factory Design Pattern

• Definition
Provide an interface for
creating families of
related or dependent
objects without
specifying their
concrete classes1.

1From
http:/ / www.dofactory.com/ patterns/ PatternAbstract.aspx

http://www.dofactory.com/patterns/PatternAbstract.aspx

X M L T u t o r i a l

37

JAX­P Factories

The JAXP API package contains two vendor-
neutral factory classes:

• SAXParserFactory

• DocumentBuilderFactory

Ability to plug in an XML implementation
offered

The implementation depending on
javax.xml.parsers.SAXParserFactory and

javax.xml.parsers.DocumentBuilderFactory
system properties. The default values

point to Sun’s implementation.

X M L T u t o r i a l

38

JAX­P Packages

The SAX and DOM APIs are def ined by XML- DEV
group and by the W3C,respect ively. The

libraries that def ine those APIs are:

• javax.xml.parsers: common interface for
dif ferent vendors’ SAX and DOM parsers.

• org.w3c.dom classes for all of the
components of a DOM.

• org.xml.sax basic SAX APIs.

• javax.xml.transform XSLT APIs.

X M L T u t o r i a l

39

The “ Sim ple API” for XML The “ Sim ple API” for XML
(SAX)(SAX)

• Event- driven, serial- access mechanism

• Element- by- element processing.

• Reads and writes XML to a data repository or
the Web (URL).

• For server- side and high- performance apps.

Drawbacks:

• Hard event model to manage even simple
situat ions

X M L T u t o r i a l

40

The DOM APIThe DOM API

• Generally an easier API to use.

• Tree structure of objects.

• Ideal for interact ive applicat ions because the
ent ire object model is present in memory.

Drawbacks

• In memory model threatens overall
performance

X M L T u t o r i a l

41

SAX ArchitectureSAX Architecture

Java WS Tutorial

X M L T u t o r i a l

42

DOM architectureDOM architecture

Java WS Tutorial

X M L T u t o r i a l

43

TransformTransform

Java WS Tutorial

X M L T u t o r i a l

44

Loading DOM sample

Code For Loading DOM from XML file

Loading DOM.doc

X M L T u t o r i a l

45

Further Readings

• Java Web Services Tutorial:
http:/ / java.sun.com/ webservices/ downloads/ webservicestutorial.html

http://java.sun.com/webservices/downloads/webservicestutorial.html

