<2XML 2
Tutorial

Luigl lannone
Ignazio Palmisano

Dip. Informatica - Universita di Bari

XML Tutorial

What is XML ?

Extensible Markup Language (XML!) is a W3C
recommendation specifying a mark-up language
for distributing textual documents across the World

Wide Web.

http://www.w3.org/XML

XML Tutorial e

Example: XML document

<?XM. VERSI ON="1. 0" ?>

<mai | >
<Reci pi ent >&henni ng; </ Reci pi ent >
<Sender >& ngo; </ Sender >
<Dat e>Mon, 21 Apr 1997 09: 27:55 +0200</ Dat e>
<Subj ect >XM. |iterature</ Subject>
<Text body>
Hell o M <Nane>Behne</ Name>,
Pl ease read <Nanme>Jon Bosak</ Nane>'s i ntroductory
text "SGW., Java and the Future of the Wb"
Best w shes,
<Nane>l ngo Macheri us</ Nane>
</ Text body>
</ mail >

XML Tutorial

Architectural Dependencies

Instances /
Domains

<
RDF| |CDF||CcML]|| .. %

XML HTML

SGML

XML Tutorial

Example Documents

e Books e Dictionaries

e User manuals * Newspapers

e Product catalogs e Style sheets

e Order forms e Musical scores

e Medical documents e Library indices

e Tax forms e Protein sequences
e Mathematical formulas e Bibliographies

e Chemical formulas e Database schemas
e Drug descriptions °

XML Tutorial

Goals

e XML ensures that structured data will be
syntactically interoperable among applications
and vendors.

e The resulting interoperability boosted a new
generation of business and e-commerce Web
applications.

e XML provides a data representation standard (in
the sense of syntax), useful in many application
domains

e XML allows for separation of presentation from
data structure

XML Tutorial

From a technical point of view, XML can be used to mark up the following:

Structural Representation of Data

e An ordinary document.
e A structured record, (e.g.: an appointment record or purchase order).

e An object with data and methods, such as the persistent form of a Java
object or ActiveX control.

e A datarecord, such as the result set of a query.
e Meta- content about a Web site, such as Channel Definition Format

(CDF).
e Graphical presentation, such as an application's user interface.
e Standard schema entities and types.

e All links between information and people on the Web.

XML Tutorial

XML Documents

e XML Is a text- based format, similar to HTML

e An XML source is made up of XML elements, each of
which consists of a start tag (e.g.. <title>), an end tag
(e.g.. </title>), the information between the two tags
(that Is the content) and attributes of the tag (e.g.
<title language="en”>Wuthering Heights</title>).

e Unlike HTML, XML allows an unlimited set of tags
defined by user

XML Tutorial

XML Features in a Nutshell

e Extensibility
— Unlimited set user- defined tags

— Can be used in any domain

e Structure
—Can represent trees and graph structures
(database schemas, OO hierarchies, ...)
e Validation

— XML- consuming applications can check for
structural validity on import

XML Tutorial

Authoring guidelines

There are several key things to remember when
constructing a basic XML document:

e All elements must have an end tag.

e All elements must be cleanly nested (overlapping elements
are

not allowed).
e All attribute values must be enclosed in quotation marks.

e Each document must have a unique first element, the root
node.

XML Tutorial

Examples

<books>
<book 1 sbn="0345374827">
<titl e>The Geat Shark Hunt</title>
<aut hor >Hunter S. Thonpson</ aut hor >
</ book>
</ books>

<books>
<book |1 sbhn=0345374827>
<title>T eat rk Hunt

<aut hor >Hunter S. Thonpsosn</titl e> ut hor >
</ book>

</ books>

XML Tutorial _

XML Markup Overview

XML documents contain

e Character Data

Comments & Escaped content

Processing instructions

Elements

Document Type Definition Markup

XML Tutorial

Character Data

e Unicode (ISO 10646) characters without markup
e Example:

<p>Hel | o M <Nanme>Behne</ Nanme>, </ p>

<p>Pl| ease read <Nane>Jon Bosak</Nane>'s introductory
t ext </ p>

<p>"SGW, Java and the Future of the Web"</p>
<p>Best W shes, </ p>

<p><Nane>| ngo Macheri us</ Nanme></ p>

XML Tutorial _

Comments & Escaped Content

e |gnored during processing
e Example:

<I-- This is a sanple enail data file -->

<! [CDATA[...any markup here ...]]>

XML Tutorial

Processing Instructions

e Special instructions to the XML consumer application
e Example:

<?XM. VERSI ON="1. 0" encodi ng="UTF- 8" ?>

XML Tutorial _

Elements

e Consists of a start tag, body, and end tag
e Body can be any other markup (even nested)
e Examples:

<p>Best Wi shes, </ p>

<p><Nane>| ngo Macheri us</ Nane></ p>

<p></p>

e Empty element shorthand:

<p/ >

XML Tutorial

Attributes

e Optional (Attribute, Value) pairs associated with elements
e Example:

<person firstnane=“John Bosak” surnane=*John”>
<addr ess>Sun M cr oSyst ens</ addr ess>

<e- nmuai | >bosak@un. conx/ e-mai | >

</ person>

XML Tutorial

Document Type Definition

e Specifies rules to which XML documents have to be compliant
with

e |Includes definitions of entities e.g.:

<I DOCTYPE mai | SYSTEM "email.dtd" |

<IENTITY ingo "1 ngo. Macheri us@ u- cl aust hal . de"

<IENTITY henni ng "hb@ x. hei se. de" >

XML Tutorial

Internal Text Entities

Entities are similar to constants in programming
languages

<IENTITY email _dib "info@li .uniba.it" >

“For more information, send a message to &email dib;”

XML- Parser

“For more information Please, send a message to
I nfo@li . uniba.it”

XML Tutorial

Built-in entities

o < for ‘<’

e > for >’

e & for ‘&’
e ' for ‘"’

* " for * " < Sanford & son >

XML- Parser

< Sanford & son >

XML Tutorial

External entities

Entity defined in a Ioca@

<IENTITY nyentity SYSTEM “/ ENTS/ MYENTI TY. XM.” >

Entity defined with a public
name

< ENTI TY nyentity PUBLI C “-//M/Corp//ENTI TI ES/ /"

“http://ww. bl a. conf dt d/ nydtd. dtd” >

XML Tutorial

Document Type Definition (DTD)

e |dentifies the structure of the XML “flavor” being used,
i.e. CDF, RDF, CML, ...

e Meta-information about the document contents:
—Valid element names
—Valid attribute names and values

—How elements can nest in each other
e Typically the DTD is stored in a separate document
e DTD does not say anything about document semantics

e DTD is an optional feature of XML

XML Tutorial

Well-formed vs. Valid Documents

e Well-formed

—Conforms to the basic XML syntax (see Authoring

Guidelines)

e Valid
—Well- formed

—Conforms to its DTD (valid against its DTD)

XML Tutorial —

Writing a DTD

* External DTD *

<?xml version="1.0" encoding="UTF- 8" 7>
<IDOCTYPE greeting SYSTEM "hello.dtd" >

* Internal DTD *| DTDs are

<?xml version="1.0" encoding="UTF- 8" ?>] expressed within XMl
<IDOCTYPE greeting [Document
<!ELEMENT greeting (#PCDATA)>

1>

XML Tutorial

DTD Element Declarations

e Specifies a valid element and its valid contents
(What can be nested inside the element?)

e Uses regular expressions to define valid contents
e Examples:

<! ELEMENT br EMPTY> [l enpty el ement
<I ELEMENT p ANY> /1 allows everything
<! ELEMENT nmai |

(subject | from| to | textbody)*)>

XML Tutorial _

Model groups

A model group is used to describe enclosed elements and
text

Segquence

<! ELEMENT el enent Nane (a, b,c,d) >

Choice

<! ELEMENT elenmentNane (a | b | c | d) >
Mixed

<! ELEMENT elenmentNane (a, b, (c | d)) >

XML Tutorial _

Quantity control

The DTD author can dictate how many times an element can
occur at each location

Required element (not repeatable) (title,author)
Optional element (not repeatable) (title,author?)
Required element (repeatable, at least one)(titl e, chapter+)

Optional element (repeatable)

(title,chapter?*)

A model group may itself have an occurrence indicator
+ * ?

The location where the text is allowed are indicated by the
keyword ‘PCDATA’

<! ELEMENT subj ect (#PCDATA) >

<subj ect >XM. Tut ori al </ subj ect >

XML Tutorial

DTD Attribute List Declarations

e Defines allowed attribute names and values of an element

e Example:
El ement narrej 9I t val uej
<I ATTLI ST 11 st

| i sttype (bullets|ordered|glossary) “glossary”
name CDATA #REQUI RED

Nane Type #REQUIRED]

#IMPLIED

XML Tutorial

DTD : Some Attribute Types

e CDATA - Any value
e |D - Unique identifier for the XML Eement

e |DREF - Reference to an element with a specific ID
e |IDREFS- Sequence of IDREFs

e NMTOKEN -

e NMTOKENS

e ENTITY

XML Tutorial _

Quick review

e Comments & Escaped content

<l-- .> <I'[CDATA[...]]>
e Processing instructions

<?XM. ...7?>
e Hements

WBC</ A>

e Document Type Definition Markup
DOCTYPE, ELEMENT, ATTLI ST

XML Tutorial

Namespaces

e An XML namespace is a collection of names that can be
used as element or attribute names in an XML document.

e The namespace qualifies element names uniquely on the
Web in order to avoid conflicts between elements with the
same name.

e The namespace is identified by some URI (Universal
Resource Identifier), URIs are used simply because they are
globally unique across the Internet.

e The namespace is used in order to define a domain

Namespace declaration

<BOCKS>
<bk: BOOK xm ns: bk="urn: BookLovers. org: Bookl nf 0"
xm ns: noney="ur n: Fi nance: Money”
xm ns: peopl e="urn: Regi stryO fice: Peopl e” >
<bk: TI TLE>A Sui t abl e Boy</ bk: TI TLE>
<bk: PRI CE noney: currency="US Dol | ar"> 22. 95
</ bk: PRI CE>
<bk: AUTHOR>
<peopl e: TI TLE>Dr . </ peopl e: TI TLE>
<peopl e: NAME> J. Sm t h </ peopl e: NAVE>
</ bk: AUTHOR>
</ bk: BOOK>
</ BOOKS>

XML Tutorial

XML Schema : What is it?

e An XML document describing what another valid
XML document should contain

e Specifically,a W3C Recommendation for an
XML- document syntax specification that
describes the allowed contents of XML
documents

e Created by W3C XML Schema Working Group
based on many different submissions (

)

http://www.w3.org/XML/Schema

XML Tutorial

What’s wrong with DTDs ?

e Not uniform in fact non- XML syntax

e No data typing, especially for element content
e Limited extensibility

e Only marginally compatible with namespaces

e Cannot use mixed content and enforce order
and number of children elements in a smart way

e Cannot enforce number of child elements
without also enforcing order. (i.e. no & operator
from SGML)

XML Tutorial

Why XML Schema ? ...

e Enhanced data types

— 44+versus 10
—Can create your own datatypes

e Written in the same syntax as instance

documents
— Less syntax to remember

e Object- orientedness

— Can define the child elements to occur in any
order (yet with some limitations ®)

XML Tutorial

... Why XML Schema ?

e Can specify element content cardinality

e Can define multiple elements with the same
name but different content (thx to namespaces)

e Can define substitutable elements - e.g., the
"Book" element is substitutable for the
"Publication” element (tricky thing look at

for more)

http://www.w3schools.com/schema/schema_complex_subst.asp

XML Tutorial

XML Schema : Structure

An XML Schema document is enclosed into the <schema>
tag and it can contain:

e <import> and <include> to insert other Schema
document

e <simpleType> and <complexType> to define data types

e <element> and <attribute> to define global elements and
attributes of the document

e <attributeGroup> and <group> to define set of attributes
and groups of complex content model

e <notation> to define not XML notations into the XML
document

e <annotation> to insert comments

XML Tutorial

XML Schema : types...

e Simple types: cannot have children or attributes
(string, decimal float, boolean, uriReference,
date, time, ecc.)

e Complex types: can have child elements and
attributes

XML Tutorial

...types (Example)

<xsi:simpleType name="‘'bodytemp’ base="‘decimal’>
< Xsi:precision value=*'3'/>
<xsi:scale value=‘1'/>
<xsi:minlnclusive value=‘36.5"/ >
<xsi:maxlInclusive value=‘44.0'/ >

</xsi:simpleType>

<xsi:complexType name="‘name’>
< xsi:element name=‘forename’ minOccurs=‘0" maxOccurs=‘*"/>
< Xxsi:element name="‘surname’/ >

</xsi:complexType>

XML Tutorial

XML Schema : Facets

For each type | can define facets, that specify the
constrains of the type:

e |length, minLength, maxLength: number demanded, min
and max of characters

e minExclusive, mininclusive, maxExclusive, maxinclusive:
min and max value, inclusive and exclusive

e pattern:regular expression that value must satisfy
e enumeration: set of values

¢ ecCCcC.

XML Tutorial

XML Schema : deriving types...

New simple types are defined by deriving them
from existing atomic types building a complex
tree

It iIs possible to extend types in two ways:

e by restriction (derivedBy="restriction”) i.e. specifying
added facets.

e by extension (derivedBy="“extension”) i.e. extending the
content model

XML Tutorial

Linking to the XML Schema

With the <schemalocation> tag into the XML
document we can link to the XML Schema
document

<fv:pippo xmlns:fv="http:// www.pippo.org/ Pippo
xmlns:xsi=*http:// www.w3.org/ XMLSchema/ istance”
xsi:schemalocation="http://www.pippo.org/ pippo.xsi”>

</fv:pippo>

XML Tutorial

XSL: formatting XML

e XML has not a fixed tag set (like HTML)
e XML by itself has no (application) semantics

e A generic XML parser has no idea what is "meant”
by the XML

e XML markup does not include formatting
Information

e The information in an XML document may not be in
the form in which it is desired to present it

XML Tutorial

Advantages of separating content from style

e reuse of fragments of data
e multiple output formats
e styles tailored to the reader's preference

e standardized styles: corporate stylesheets can be
applied to the content at any time

e freedom from style issues for content authors

XML Tutorial

Web Browser

XSL
Stylesheet

AML-enabled XSL Display
Web Browser Engine

XML Tutorial

What Does a Stylesheet Do?

Transforms an XML document into another XML document.

Starting XML Document|<®#” XSL Stylesheet

3 D>
é“l g ;XML Document

XHTML page XSL Stylesheet

XML Tutorial

The components of the XSL language

The full XSL language logically consists of three
component languages which are described in
three W3C Recommendations:

e XPath: XML Path Language- - a language for referencing
specific parts of an XML document

e XSLT: XSL Transformations- - a language for describing how to
transform one XML document (represented as a tree) into
another

e XSL: Extensible Stylesheet Language- - XSLT plus a description
of a set of Formatting Objects and Formatting Properties

XML to result tree

An XSLT transforms the input document's tree into a structure
called a result tree consisting of result objects

XML Source Tree XHTML Result Tree

html

Bock head body

/”/R

hZ bleckquote

Title Auwthor Chapter Chapter
Title Summeary Pearagraph Paragraph

Text Figure
/ ,
Graphic Title

=html=
<head>...</head-
<body=
=h1=</h1=
<h3=<fh3>

o

<fhtml=

XML Tutorial

An XSL stylesheet

e An XSL stylesheet basically consists of a set of
templates

e EFach template "matches" some set of elements in
the source tree and then describes the contribution
that the matched element makes to the result tree

XML Tutorial

HTML vs. XSL Formatting Objects

e Transformation is independent of the target result
type

e Most people are more familiar with HTML so many
of the examples in this tutorial use HTML

e The XSL implementation in IE5 is incomplete. The
examples in this tutorial will not work in IE5

e The techniques apply equally well to XSL
Formatting Objects or other tag sets

e XSLT Is atree-to-tree transformation process

e Serialization may vary depending on the selected
output method

XML Tutorial

The Structure of a Stylesheet

o XSLT Stylesheets are XML documents; namespaces
are used to identify semantically significant
elements.

e Most stylesheets are stand- alone documents
rooted at <xsl:stylesheet> or <xsl:transform>. It is
possible to have "single template”
stylesheet/ documents.

e <xsl:stylesheet> and <xsl:transform> are
synonymous.

XML Tutorial

XML Path Language (XPath)

e XPath has an extensible string- based syntax

e |t describes "location paths" across documents

e One inspiration for XPath was the common
"path/file" file system syntax

XML Tutorial

Pattern Examples

®* para
Matches all <para> children in the current context

®* paral/ enphasis

Matches all <emphasis> elements that have a parent of <para>
* /

Matches the root of the document

®* paral//enphasis
Matches all <emphasis> elements that have an ancestor of <para>

® section/parall]

Matches the first <para> child of all the <section> children in the current
context

° //title
Matches all <title> elements anywhere in the document

* /ltitle

XML Tutorial

More Complex Patterns

® section/*/note
Matches <note> elements that have <section> grandparents.

® stockquot e[@ynbol]
Matches <stockquote> elements that have a "symbol" attribute

®* stockquot e[@ynmbol =" XXXX"]

Matches <stockquote> elements that have a "symbol" attribute with the
value "XXXX"

® enphasi s| strong
Matches <emphasis> or elements

XML Tutorial

Pattern Syntax

e An XPath pattern is a 'location path', a location path
IS absolute if it begins with a slash (/") and relative
otherwise

e A relative location path consists of a series of
steps, separated by slashes

e A step is an axis specifier, a node test, and a
predicate

XML Tutorial

Node Tests: most frequently element names

* nane
Matches < name> element nodes

Y *

Matches any element node

°* nanespace: nane
Matches <name> element nodes in the specified namespace

* nanespace: * _ -
Matches any element node in the specified hamespace

e comment ()
Matches comment nodes

e text()
Matches text nodes

e processing-instruction()
Matches processing instructions

e processing-instruction(' target') o
Matches processing instructions with the specified target (< %arget ...?>

e node()
Matches any node

XML Tutorial

Predicates: occur after the node test in square
brackets

* nodetest[1]
Matches the first node

e nodetest[position()=last()]
Matches the last node

e nodetest[position() nod 2 = 0]
Matches even nodes
e elenent[@d="'fo0']
Matches the element(s) with id attributes whos value is "foo"

e elenent[not(@d)]
Matches elements that don't have an id attribute

e aut hor[firstnane="Nornan"]

Match <author> elements that have <firstname> children with the
content "Norman".

e author[nornmalize-space(firstnane)="Norman"]
Match "Norman" without regard to leading and trailing space.

AXIS gpec#lers: determines what general category |

of nodes may be considered for the following node
test

e ancestor
Ancestors of the current node

* ancestor-or-self
Ancestors, including the current node

e attribute _
Attributes of the current node (abbreviated "@")

e child _
Children of the current node (the default axis)

e descendant
Descendants of the current node

e descendant-or-self _
Descendants, including the current node (abbreviated "/ /")
e following / follow ng-sibling _
Blements which occur after the current node, in document order
e preceding / preceding-sibling _
BElements which occur before the current node, in document order

* panmespace
The namespace nodes of the current node

e parent _
The parent of the current node (abbreviated "..")
e self

The current node (abbreviated ".")

XML Tutorial

XML Query Language (XQL)

e XQL provides a natural extension to the XSL pattern language.
It builds upon the capabilities XSL provides for identifying
classes of nodes, by adding Boolean logic, filters, indexing
Into collections of nodes, and more.

e XQL is designed specifically for XML documents. It is a
general purpose query language, providing a single syntax
that can be used for queries, addressing, and patterns. XQL is
concise, simple, and powerful.

e XQL is desighed to be used in many contexts. Although it is a
superset of XSL patterns, it is also applicable to providing
links to nodes, for searching repositories, and for many other

applications.

XML Tutorial

XQL : Context...

e A context is the set of nodes against which a query operates.

e XQL allows a query to select between using the current context as
the input context and using the 'root context' as the input context.
The 'root context' is a context containing only the root- most
element of the document. When using XML::DOM, this is the
Document object.

e By default, a query uses the current context. A query prefixed with '/’
uses the root context. A query may optionally explicitly state that it
IS using the current context by using the './' prefix. Both of these
notations are analogous to the notations used to navigate directories
in a file system.

e The'./' prefix isonly required in one situation. A query may use the
' /' operator to indicate recursive descent. When this operator
appears at the beginning of the query, the initial '/' causes the
recursive query to be carried out starting from the root of the
document or repository. The prefix './/' allows a query to perform a
recursive descent starting from the current context.

XML Tutorial

XQL : ...Context (Example)

e Find all author elements within the current context
. [aut hor

e Note that this is equivalent to

aut hor
e Find the root element (bookstore) of this document

/ bookst ore
e Find all author elements anywhere within the current document

[[aut hor

e Find all books where the value of the style attribute on the book
IS equal to the value of the specialty attribute of the bookstore
element at the root of the document

book[/ bookstore/ @pecialty = @tyl e]

XML Tutorial

XQL : Collections - ‘element’ and *.’

e The collection of all elements with a certain tag
name is expressed using the tag name itself.

e This can be qualified by showing that elements are
selected from the current context './', which is
always assumed.

XML Tutorial _

XQL : Collections (Example)

®* Find all first- name elements. These examples are equivalent:

./ first-nane
first-nane

®* Find all unqualified book elements:

book

XML Tutorial

XQL : Selecting children and descendants - '/ and '//

e These operators have as arguments a collection
(left side) from which to query elements, and a
collection indicating which elements to select (right
side).

e The child operator ('/')selects from immediate
children of the left- side collection,

e The child operator ('//') selects from arbitrary
descendants of the left- side collection.

XML Tutorial

XQL: '/"and '/’ (Example)

e Find all first- name elements within an author element:
aut hor/first-nanme
e Find all title elements, one or more levels deep in the bookstore:

bookstore//title
e Finds all title elements that are children (second level) of
bookstore elements:

bookstore/*/title
e Find emph elements anywhere inside book excerpts, anywhere
Inside the bookstore:

bookst or e/ / book/ excerpt// enph
e Find all titles, one or more levels deep in the current context:

Altitle

XML Tutorial

XQL : Finding an attribute - '@’

e Attribute names are preceded by the '@ symbol.

e XQL is designed to treat attributes and sub-

elements impartially, and capabilities are equivalent
between the two types wherever possible.

Note: attributes cannot contain subelements.

XML Tutorial

XQL : Finding an attribute (Example)

e Find the style attribute of the current element context:
@tyl e

e Find the exchange attribute on price elements within the current
context:

pri ce/ @xchange
® The following example is not valid:

price/ @xchange/t ot al
e Find all books with style attributes:

book[@t yl €]
® Find the style attribute for all book elements:

book/ @tyl e

XML Tutorial

XQL : Literals

XQL query expressions may contain literal values (i.e.
constants.)

Example
Integer Numbers:

234
- 456

Floating point Numbers:

1.23
-0.99

Strings:

"some text with 'single quotes”
"text with "doubl e" quotes'

Not allowed:
1. 23E-4 (use eval ("1.23E-4", "Nunmber") in XQ.+)

XML Tutorial

XQL : Filters - T '

Constraints and branching can be applied to any collection by
adding a filter clause '[]' to the collection.

Example

Find all books that contain at least one excerpt element.
book[excer pt]

Find all titles of books that contain at least one excerpt element:

book[excerpt]/title

Find all authors of books where the book contains at least one excerpt,
and the author has at least one degree:

book[excer pt]/ aut hor [degr ee]

Find all books that have authors with at least one degree:
book[aut hor/ degr ee€]

Find all books that have an excerpt and a title:
book[excerpt][titl]e]

XML Tutorial

XQL : Boolean AND and OR - 'and' and 'or'

e and and or are used to perform Boolean ands and ors.

e The Boolean operators, in conjunction with grouping
parentheses, can be used to build very sophisticated logical

expressions.

Example
Find all author elements that contain at least one degree and one

award.
aut hor [degree and awar d]

Find all author elements that contain at least one degree or award and

at least one publication.
aut hor [(degree or award) and publication]

XML Tutorial

XQL . Match operators - '$match$’, 'no_match', '=~' and '!~'

e The $match$ operator (shortcut is '=~") returns TRUE if the
lvalue matches the pattern described by the rvalue.

e The no_match operator (shortcut is 'l~') returns FALSE if
they match.

Example

Find all authors whose name contains bob or Bob:
author[first-nanme =~ '/[Bb]ob/"']

Find all book titles that don't contain 'Trenton' (case- insensitive):
book[title '~ "mtrenton!i']

XML Tutorial

XQL : Methods - 'method()' or 'query!method()

e XQL provides methods for advanced manipulation of
collections.

* Methods provide specialized collections of nodes.

Example

The text() method returns the text contained within a node, minus any
structure.

The following expression will return all authors named 'Bob':

author[text() = 'Bob']

The following will return all authors containing a first- name child
whose text is 'Bob"

author[first-nane!text() = 'Bob']

The following will return all authors containing a child named Bob:
author[*!text() = 'Bob']

XML Tutorial

XQL : Functions

e The spec states that: XQL defines two kinds of
functions: collection functions and pure functions.

e Collection functions use the search context of the Invocation
instance

e Pure functions ignore the search context, except to evaluate
the function's parameters.

e A collection function evaluates to a subset of the search
context

e Pure function evaluates to either a constant value or to a
value that depends only on the function's parameters.

XML Tutorial

XQL : Collection Functions

Function: textNode()
The collection of text nodes.

Function: comment()
The collection of comment nodes.

Function: pi()
The collection of processing instruction nodes.

Function: element([NAME])

The collection of all element nodes. If the optional text parameter is
provided, it only returns element children matching that particular
name.

Function: attribute([NAME])

The collection of all attribute nodes. If the optional text parameter is
provided, it only returns attributes matching that particular name.

Function: node()
The collection of all non- attribute nodes.

XML Tutorial

XQL : Other Functions

® Function: ancestor(QUERY)
Finds the nearest ancestor matching the provided query. It returns either a
single element result or an empty set [].
Examples
Find the nearest book ancestor of the current element:
ancest or (book)
Find the nearest ancestor author element that is contained in a
book element:

ancest or (book/ aut hor)

®* Function:id(NAME)

Pure function that evaluates to a set. The set contains an element node that
has an 'id' attribute whose value is identical to the string that the Text
parameter quotes. The element node may appear anywhere within the

document under iueri.

XML Tutorial

XQL : Operator Precedence

Lists operators in precedence order, highest precedence

first.

Producti on Qper at or (s)

G oupi ng ()

Filter []

Subscri pt []

Bang !

Pat h [1]

Mat ch $mat ch$ no_match =~ ! ~ (XQL+ only)

Conpari son = l= < <= > >= eq nes It le gt
ge $i eq$ $ines $|It$ $iled $igts ige

| nt er secti on $intersect$

Uni on $uni on$ |

Negat i on $not $

Conj uncti on and

Di sj uncti on or

XML Tutorial

XQL : Example 1...

o XML file

<?xml _version="1.0"?>
<i nvoi cecol | ecti on>

<i nvoi ce> _
<custonmer>W | e E. Coyote, Death Valley, CA</custoner>

<entries n=2>
<entry quantity=2 total _price="134.00">
<pr oduct naker="ACVE" prod name="screwdriver" price="80.00"/>

</entry>
<entry quantit total price="20.00">

<product nmm er—"ACNE" ~prod_nane="power w ench" price="20.00"/>
</entry>

</entries>
</invoi ce>
<i nvoi ce>
<custoner>Canp Mertz</custoner>
<entries n=2>
<entry quantity=2 total price="32.00">

<product naker ="BSA" prod_nanme="l|eft-handed.." price="16.00"/>

</entry>
<entry quantity=1 total price="13.00">

<pr oduct maker="BSA" prod nanme="snipe call" price="13.00"/>
</entry>

</entri es>
</invoice> _
</invoi cecol | ecti on>

XML Tutorial

XQL : ...Example 1...

e Query:
[/ customer

e Result:
<xql:result>
<customer> Wile E Coyote, Death Valley, CA </customer>

<customer> Camp Mertz </customer>

</xql:result>

XML Tutorial _

XQL : ...Example 1...

e Query:
/I product[@maker="BSA’]
e Result:

<xql:result>

<product maker="BSA" prod_name="left- handed smoke shifter"
price="16.00"/>

<product maker="BSA" prod_name="snipe call" price="13.00"/>

</xql:result>

XML Tutorial _

XQL : ...Example 1

e Query:
/ I invoice[customer="Wile E. Coyote, Death Valley, CA']// product
e Result:

<xql:result>
<product maker="ACME' prod_name="screwdriver" price="80.00"/>

<product maker="ACME' prod _name="power wrench" price="20.00"/>
</xgl:result>

XML Tutorial

XML is ...

e Usable over the Internet
e Supporting a wide variety of applications

* SGML () compatible
e Easy to write
e Easy to process by program

e Optional features free (no dialects or proprietary
Implementations)

e Human-readable (not so much in practice ®) and clear
e Formally designed

http://www.iso.ch/cate/d16387.html

XML Tutorial

And some more applications ...

e Web Collections e Mathematical Markup Language

e Meta Content Framework e OpenTag Markup

e XML- Data e Metadata PICS

e Name Spaces in XML e Synchronized Multimedia Integration

Language (SMIL)
e Web Interface Definition Language

e Chemical Markup Language
e Bioinformatic Sequence Markup

Language (BSML) (WIDL)
e Open Financial Exchange ° I(?égmatlon and Content Exchange

e Open Trading Protocol (OTP) « Ontology and Conceptual

e Encoded Archival Description (EAD) Knowledge Markup Languages

e Translation Memory Exchange (TMX) Cold Fusion Markup Language

e Scripting News in XML (CFAML)

e Tutorial Markup Language (TML) * .ava Speech Markup Language (JSML)
e Resource Description Framework

XML Tutorial

Software Opportunities

e XML export & import from/to databases
e Mapping XML to legacy formats & back
e Mapping between different XML DTDs

e DTDs and tools for specific application areas
(for example, Healthcare, product catalogs, enterprise
information repositories, supply chain integration)

e Tools and languages for processing XML
WIDL, WebL, ...

XML Tutorial

XML Content Manager

It iIs a middleware for dealing with XML
documents, it can be integrated within broader
systems, in distributed architectures and exploits
the state of the art of interoperability
technologies

It has been and is currently being exploited in
many EU research projects both for e-commerce
(COGITO) and Historical Knowledge Management

(COLLATE)

XML Tutorial

XML CM: Scenarios

e XML Repository

e XML Message manager within a broader system
e XML authoring

e ETL operation towards Enterprise Data
Warehouses

XML Tutorial

XML CM: Standard compliance

XML CM relies and is compliant to (among others)
the following standards:

e Document Object Model (W3C —DOM)
e XQL (W3C)
e Simple Object Access Protocol (W3C — SOAP)

e Java 2 Enterprise Edition 1.3 (by Java
Community Process)

XML Tutorial

Document Object Model

o, o, E
HamedNodeMap i Hode -l Modelist

A

Attr DocumentType
Entity DocumentFragment
Document — Element
Notation Processinglnstruction
EntityReference

CharacterData DOMImplementation
/K DOME=ception
I |
Text Comment

A

CDataSection

XML Tutorial

XML CM: Doc manipulation grain size

e Document Manager: Manages the whole
document as a unit

e Element Manager: Manages single o multiple
elements wihtin a Document

XML Tutorial

XML CM: Collaboration support

Multi —user environment

Version management (unreserved checkout
model for same document concurrent access)

Event notification

Multi- agent based support for collaboration
(next step in current research work on XML CM)

XML Tutorial

Users Groups

Private Working Shared

XML Tutorial

Version Management

starting version

document concurrently,
creating new versions

_They can VerSIOn the new version
checked out documents from user A

—They can compare and
merge two versions of j

e XML CM implements
the “unreserved j
checkout” model \f? &\j
—Several users can
checkout the same for user A | j]"?&"32252""
L

N=

new version
from user B

the same document and

then ChECk- |n the merged version
merged version

XML Tutorial

JDB

Integration Layer

XML CM

Ta ino
propr etary
protpcol

EI {:I =mlcm
l #-] demaSOaP

{:I sssss

XML Tutorial

XML CM way of integration: Web Services

A paradigm for deploying software services
through Internet

Language independent

Transport independent
Based on XML

Brings to a new way of selling software
(Application Service Providing)

XML Tutorial

Web Services: Involved Technologies

HTTP
o XML

e UDDI (Universal Description, Discovery &
Integration)

e WSDL (Web Services Description Language)
e SOAP (depending on chosen transport)

e CORBA (depending on chosen transport)

e Any other transport solution

| SERVLETs |
1

EJBs

Connectors
(JTA)

tb H'!tirf [
iﬂ'ﬁh’l‘ﬁl"ﬂ' Fﬁfﬂm

XML Tutorial

Further Readings

. (a.k.a.

e XML Bible (
)

http://www.xmlfiles.com/
http://www.xmlfiles.com/
http://www.xmlfiles.com/
http://www.xml101.com/
http://www.mmg.vmei.acad.bg/xml/
http://www.mmg.vmei.acad.bg/xml/
http://www.mmg.vmei.acad.bg/xml/
http://www.w3schools.com/

XML Tutorial _

Contacts

e Luigi lannone —

* |gnazio Palmisano
e Giovanni Semeraro -

e Course Info URL:

http://www.di.uniba.it/~iannone
mailto:iannone@di.uniba.it
mailto:ignazio_io@yahoo.it
http://lacam.di.uniba.it:8000/people/semeraro.htm
mailto:semeraro@di.uniba.it
http://lacam.di.uniba.it:8000/people/semeraro.htm

